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Abstract 

 

This work undertakes a numerical study of turbulent incompressible flows in Rayleigh-Benard 
configurations using Large Eddy Simulation and two sub-grid scale models, i.e., the WALE (Wall 
Adapting Local Eddy-viscosity) model and the corresponding dynamic sub-grid model (DSGS). In 

the process of using DSGS, an optimal value of constant 
WC  of the WALE model was determined 

for the envisaged Rayleigh number (Ra=6.3.10
5
). The computed numerical results (on a relatively 

coarse grid) showed good agreement with those Direct Numerical Simulation (DNS) results found 
in the literature. It is observed that the profiles obtained are highly dependent on the time interval 
over which the statistics are made (equivalent to the Interval of Statistical Analysis (ISA). 
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INTRODUCTION 
 
Turbulent natural convection with two differentially heated side walls has been an attractive subject in fundamental 
turbulence research. In this work we will start by presenting the equations governing the incompressible flows of 
fluids under the approximations of Boussinesq, then will present the filtered equations related to these flows.   The 
turbulent eddy viscosity appearing in the filtered conservation equations of the momentum is modeled by the WALE 
model of Nicoud (Nicoud and Ducro, 1999). For  the turbulent thermal diffusivity, a simple relation between turbulent 
kinematic viscosity and turbulent Prandtl number were used. The validation of the computer code was carried out by 
a problem of turbulent natural convection between two infinite plans subjected to different temperatures (Rayleigh-
Bénard problem).  

It is well known that for high Rayleigh number turbulent flows, the extended range of turbulent scales is of concern. 
Direct Numerical Simulation (DNS) cannot solve high Rayleigh turbulent flows due to the large amount of 
computational information generated by the large range of scales. Owing to this drawback, DNS is normally 
restricted to low and moderate Reynolds number flows. 

The Large Eddy Simulation (LES) methodology introduced by Smagorinsky (1963) is situated between highest 
degrees of DNS and RANS (for Reynolds Averaged Navier–Stokes). LES is expressed by the partition of the large 
eddies structures and sub-grid scales structures using a grid filter. Large-scale flow motions are explicitly computed, 
while small-scale flow motions are modeled with a sub-grid scale (SGS) model. LES is superior to DNS in terms of 
computational cost, and better than RANS in terms of accuracy and data availability.  

Several SGS models have been utilized by a group of researchers: the Smagorinsky’s model (Smagorinsky, 
1963), the dynamic SGS model initially proposed by Germano et al., (1991) or the WALE model developed by 
Nicoud and Ducros (1999).   

In this work, we study the case of turbulent natural convection flows between two infinite plans subjected to 
different temperatures. The adopted methodology is based on the finite volume method, coupled with a full-multigrid 
acceleration and LES. A computational code to simulate transient, incompressible, three-dimensional flows was 
developed (Ben-Beya, 1995; Ben-Cheikh, 2008) using the projection method (Achdou and Guermond, 2000).  
Herein, two different SGS models were implemented, namely the WALE model (Nicoud and Ducros,1999) and the 
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corresponding dynamic model (DSGS) (Sagaut, 2001). 

The three-dimensional flow in a natural convective flow in a differentially heated cavity has been studied 
experimentally (Benkhalifa and Penot, 2006; Valencia et al., 2007) and numerically (Mc Laughlin and Orszag, 1982; 
Hongxing and Zuojin, 2006; Shetty et al., 2010). Statistical studies on the mean velocities, Nusselt number are 
performed and compared with those obtained numerically by other authors. 
 
 

 
 

Figure1. Geometry of turbulent Rayleigh-Bénard 

convection problem with Aspect ratio (6:6:1) (left) and the 
representation of the isotherms for Ra=6.3x10

5
(right) 

 
 
Governing Equations 
 
The unsteady Navier-Stokes equations for incompressible flows are: 
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 is the thermal diffusivity.  

The LES equations are obtained by applying a filtering operation of where the length of cut is  , the filtered 
dimensional equations become:  
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Where the sub-grid scale stresses are given by: 
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The filtered energy equation is:  
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The term jh
is modelled by:  
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The modeling of the term of turbulent thermal diffusivity is generally done by the intermediary of a turbulent Prandtl 

number. Within the framework of this work we chose Pr 0.9t   in the relation: 
Pr

t
t

t


  .  

 
Numerical procedure 
 
The unsteady Navier-Stokes equations are discretized using staggered, non-uniform control volumes. A projection 
method attributed to Achdou and Guermond (2000) is used to adequately couple the momentum, continuity and 
energy equations.  
The finite-volume method developed by Patankar and Spalding (1972) is employed to discretize the Navier–Stokes 
equations. The Poisson pressure correction equation is solved using a full multi-grid method as suggested by Ben-
Cheikh (2008). The numerical methodology was implemented with a FORTRAN program.  
 
 
RESULTS AND DISCUSSION 
 
In order to validate the computer code, the problem of turbulent natural convection between two infinite plans was 
retained. Figure1 illustrates the situation of the problem.  
The boundary conditions on the two vertical walls can be written as follows:  

   0, 0, 0, 0, for  0, 0,6 , 0,1 .u v w x y z
x

 
       

   

   0, 0, 0, 6, for  0, 0,6 , 0,1 .u v w x y z
x

 
       

   
For the lower wall, the boundary conditions are:  

   0, 0, 0, 1, for  0,1 , 0,6 , 0.u v w x y z      
 

For the higher wall, the boundary conditions are:  

   0, 0, 0, 0, for  0,1 , 0,6 , 1.u v w x y z      
 

In order to maximize the tests and to study the effect of some parameters on the quality of the results, we carried 
out simulations on a very coarse grid of dimension (24.24.8). The grid is with variable steps in the vertical direction 
and with constant steps in the other directions. On the basis of an initial zero field in all the fields, calculations were 
launched for Ra=6.3.10

5
 and Pr=0.71.  

In a first stage ( 0 400t  ) the equations were solved without calling upon any SGS model. Figure 2 represents the 

evolution of the component speed u at a point of co-ordinate (0.5,0.5,0.7) according to a dimensional time t.  
 

 
      

Figure 2: temporal evolution of the component 

speed u at the point of co-ordinates (0.5, 0.5,0.7).  

 
The evolution of this component shows that after a dimensional time of approximately 50, the flow evolves to a 
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strongly non stationary state with presence of several frequencies.  

The results obtained at 400t   were used thereafter as initial field to evaluate the value of constant CW of the LES 

model using the DSGS model. Figure3shows the time evolution of the space averaged value of WC over the 

computational domain. The time averaged value of 
WC  in the interval 400 600t  gave a value of an optimal 

WALE constant opt

WC 0.205  .  

 

 
 

Figure3. Time evolution of the space averaged 
coefficient CW 

 

At this stage, calculations were continued from the field obtained at 400t   with the SGS model and CW=0.205. In 

order to let the flow converge towards an established transitory state, the calculations was launched over a time of 
integration 400 800t  .Statistical calculations were then carried out on three intervals of different times, i.e.,

800 1800t  , 1800 2800t  and 2800 3800t  . Figure 4 shows the evolution of the component u(0.5,0.5,0.7,t) and 

the square of that componentu
2
(0.5,0.5,0.7,t) on the interval of time 1800 2800t  . It shows the strongly non 

stationary character of the flow. The storage of the quantities u and squared u is in fact necessary to make possible 
the statistical calculations presented in the next paragraph.  
 

 
 

Figure 4. Time evolution of the component speed 

u and its square u
2
 at the point of co-ordinates (0.5, 

0.5,0.7) 
 

Statistical calculations were carried out in of x=y=0.5 and each point Z of the intersection of these two plans 
(midline). With regard to the average quantities we used the following relation:  

max

1

K

i

i

X X


 
 

where X  indicates one of the components u, v, w speed or the dimensionless temperature .  Kmax is the 

total number of iterations of the integration interval. Regarding the average fluctuating quantities, it has been 
determined using the classical relation: 

' ' .f g fg f g   

Thus, the standard deviations of the fluctuating temperature   usually noted rms is defined by:  
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On figure 5 and 6 we report the quantities  , and rms along the midline. Sight the coarse size of the grid that we 

used, we can make only one qualitative comparison between the results obtained and those of the literature. 
It appears clearly that the statistical results strongly depend on the total time of integration of the equations.   More 

time of sampling is large plus the results convergent towards the DNS solution.  

This tendency is also observed in the profile of rms (fig. 6). Indeed, for 300t  , the LES results are much closer to 

the DNS results than for 2000t  . It is seen thus, that in spite of the coarse size of the grid used, the results are 

promising as well with regard to the average quantities the fluctuating quantities.  
 

 
 

Figure5. Representation of the average temperature 

rms along the line of centers for various adimensional 

times, comparison with calculations DNS. 
 

 
 

Figure 6. Representation of the average temperature 

along the line of centers for various dimensional times, 
comparison with calculations DNS 

 

Isotherms for Ra=6.3x105 are presented in figure 1It shows the turbulent character of the flow as well as a 
distribution of typical temperature to the strongly non stationary flows.  
The average transfer of heat through the active walls characterized by the number of Nusselt and defines 

by: 1

S

Nu Nu dS
S

   

With .dS dx dy  
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Figure7. shows the evolution of this 
number in the course of time 

 
The averaged value of the Nusselt numbering time is then about 9.18. Since the value of this number is 7.27with a 
DNS calculation (Woerner, 1986), we deduce that the gap is 26.3%. This difference is quite normal since the used 
grid is very coarse (24.24.8).It should be noted that the calculation of the reference DNS (Woerner, 1986) were 
carried out on a grid ofdimension200.200.49. Thus, this study shows that a coarse grid allows a qualitative analysis 
of the correct flow. However, further quantitative analysis would necessity a finer computational grid points than the 
one we used. 
 
 
CONCLUSIONS 
 
The three dimensional classical problem of turbulent flows in Rayleigh-Benard configuration were simulated with a 
finite volume Large Eddy Simulation methodology in this work. Two sub-grid scale models were implemented, the 
WALE’s (SGS) and the corresponding eddy viscosity dynamic model (DSGS). The results with the SGS model are 
very coherent with numerical data from other authors if an appropriate model constant

WC  is accounted for. An 

optimal value of 
WC were obtained by averaging in time the stored data of the space averaged values of 

WC

calculated with the DSGS model. For Ra=6.3.10
5
, an optimal value 205.0opt

WC was determined. It was also 

observed that the mean temperature component and the fluctuating quantities are extremely sensitive to the total 
simulation time or to the intervals of the statistical analysis (ISA). 

The presented methodology in this work will be extended for numerical simulations using the SGS model on finer 
grids. 
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