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Abstract

This paper presents a new procedure to solve multi-objective problems, where the objectives are
distributed to various working groups and the decision process is centralized. The approach is
interactive and considers the preferences of the working groups. It is based on two techniques: an
interactive technique that solves multi-objective problems based on goal programming, and a
technique called “linear physical programming” this considers the preferences of the working
groups. The approach generates Pareto-optimal solutions. It guides the director in the determination
of target values for the objective functions. The approach was tested on two problems that present its
capacity to generate Pareto-optimal solutions and to show the convergence to compromise solutions
for all the working groups.
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INTRODUCTION

The process of product design is often organized in a hierarchical structure where the specialists are separated by
discipline in several working groups. As shown in Figure 1, the working groups are supervised by a director who
coordinates the design activities. The role of the director is to collect information provided by the groups and to use
computational method to finding an optimal design. The working groups are considered as experts that have the
technical knowledge in their proper discipline.

According to their competencies, each working group is responsible of achieving specific design objectives expressing
the customer’s requirements. Often these objectives are functions of the same set of design variables and in certain
cases, they may be. For that reason, it is necessary to find an optimization procedure that takes into consideration that
knowledge and includes it in the solution.

In this paper, we develop a new Interactive Multi-objective approach taking into account the working group’s
Preferences (IMOP). The original contributions of the IMOP algorithm are the as follows.

0] It has the ability to define a reduced set of target values that can be divided into degrees of desirability to
capture the working groups’ preferences. This is an important contribution because it is a challenging issue in multi-
objective optimization.

(i) It generates Pareto-optimal solutions corresponding to the working groups’ preferences.

(iii) It subtracts the stability set from the reduced set of target values at each iteration, thus ensuring a different
Pareto-optimal solution each time.

The proposed approach is particularly interesting when the decision process is centralized and involves many working
groups who are collaborating in order to find a best compromise solution.
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Figurel. Organizational structure in product design
Multi- objective problem and pareto-optimal concept

The purpose of a general multi-objective optimization problem is to find the design variables that optimize a vector
objective function F (X) = {f1(X), fo(X) ..., fc(X)} over the feasible design space. The minimization problem formulation in
standard form is as follows (Messac et al., 1996):
Minimize F (X) = {f;(X), fo(X) ..., fi(X)}
subjecttohs (X)=0 s=1,...,t
o (X) >0, r=1,...m,
X X X e, 1)
The aim of solving a multi-objective problem is to get a Pareto-optimal solution or a set of Pareto-optimal solutions.
Conceptually, a Pareto-optimal solution is one which is not dominated by any other feasible solution. Mathematically, for

a minimization problem with k objective functions f;, i = 1,..., k, a vector X* is Pareto-optimal if there is no other feasible
X such that f (X) < f(X*), meaning that f; (X) < f;(X") for all i = 1, ..., k with strict inequality for at least one i (Tappeta et al.,
2000). In general, the optimal solutions obtained by the individual optimization of the objectives are not the same. It is
then necessary to find solutions to the multi-objective problem which are Pareto-optimal.

There are several techniques for solving multi-objective optimization problems. Some methods have been developed
to find an exact Pareto set, or an approximation of it, inside of which one of the generated Pareto optimal solutions is
chosen for implementation. These methods include compromise programming (Vassilev et al., 2001), the weight
method, and the constraints method (Tappeta et al., 2001). Several metaheuristics approaches have also been used to
solve multi-objective problems like simulated annealing (Miettinen et al., 2006), (Abdel Haleem et al., 1991) particles
swarm optimization (Lamghabbar et al., 2004) and evolutionary algorithms (Dauer et al., 1997), (Osman 1979).

However, as the number of competing objectives increases, the problem of finding the best compromise solution
becomes increasingly complex. Hence, it can become overwhelming to analyze the entire Pareto-optimal solution set to
select one solution for implementation. It becomes attractive to reduce the size of the solution set, and to assist the
decision maker in selecting a final solution (Sobieszczanski-Sobieski et al., 1997). Some methods attempt to quantify
the decision maker’'s preferences, and with this information, the solution that best satisfies the decision maker’s
preferences is then identified. These methods include among others goal programming, and linear physical
programming (Tappeta et al., 1998). Linear physical programming is a method for generating a preferred Pareto solution
during multi-objective optimization. It is an extension of goal programming. The initial development of the physical
programming methodology is presented in Messac et al. (2002). Physical programming captures the decision maker’s
preferences, a priori, in a mathematically consistent manner using a preference function. The decision maker (DM)
classifies each objective function into the four so and the four hard classes as shown in Table 1.

The DM specifies the degrees of desirability (tis tis tis, tiz, s, and/or t';s, ' t's t'is. ts) for each objective function f; in
the soft category. For classes 1S through 4S, there are, respectively, five, nine, and ten such values as shown in Tables
2,3,4,andb5.

For classes 1H through 4H, these values are, respectively,

timax tmins U va, @Nd tmax. The physical programming method involves converting a multi-objective problem into a
single objective problem by using preference functions that capture the DM’s preferences. Given the DM’s input in the
form of range boundaries (or targets) for each objective, Messac et al. (2002), suggest an algorithm to generate the
weights W and W'is. The following problem is then solved (d's and d”s are the deviational variables):
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tmin < i (X) < timax, Vvl e class 4H;
1=1,2, ..., L,
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The limitation of the physical programming is that it requires a priori selection of range parameters for each of the
objective functions and provides information for only one design scenario (i.e., a single Pareto solution). Tappeta et al.
(1998) have twinned linear physical programming with an interactive algorithm (Tappeta et al., 2000). Their algorithm
finds a Pareto solution and can generate other Pareto designs in the neighbourhood of the current Pareto solution. No
means are provided to help the DM to specify his/her initial preferences in the form of region limits defined in physical
programming.

Some authors have suggested several interactive multi-objective optimization methods [Tappeta et al., 1997),
(Vassilev et al., 2001), (Miettinen et al., 2006). These methods allow the decision maker to express his/her preferences
by using a reference point or by classifying the objectives, functions. The disadvantages of using traditional multi-
objective methods are as follows (Tappeta et al., 1999): (1) require a priori selection of weights or targets for each of the
objective functions, (2) provide only a single Pareto-optimal solution, and (3) are unable to generate proper Pareto-
optimal points for non convex problems (the weights method). Abdel Haleem et al (1991) developed an interactive
nonlinear goal programming algorithm (INLGP) that helps the decision maker to determine reference points for the
goals. The decision maker does not need to do any ranking of classification of these goals. The advantages of this
INLGP algorithm are as follows:

(1) It reduces the parametric space of the target values by limiting each parameter with minimum and maximum
values rather than by choosing any random values from the whole parametric space, and

(2) The algorithm is guaranteed to generate Pareto-optimal solutions at each iteration. The INLGP algorithm was used
for the design of a low-pass electrical circuit (Lamghabbar et al., 2004). However, no means are provided to divide the
reduced parametric space. Realizing these limitations, an interactive multi-objective approach is proposed which
attempts to address the issues mentioned above.

METHODOLOGY

An interactive multi-objective approach taking into account the working groups’ preferences (imop approach)
The IMOP approach is based on the interactive nonlinear goal programming algorithm (INLGP) of (Abdel Haleem et al.,
1991) combined to the linear physical programming introduced by (Messac et al. 1996). The IMOP approach has the

following advantages:
Q) It provides means to capture the working group’s preferences,



(2) It offers the possibility of interaction between the director and his/her working groups,

3) It generates several Pareto-optimal solutions (several design scenarios), and

(4) It fits with the industries organizational structure.

Before using the IMOP approach, it is necessary to distribute the objective functions among the working groups

Table 1. Objective function classification

Class 1S Small is better (minimization)

Soft  Class 2S Larger is better (maximization)
Class 3S Value is better

Class 4S Range is better

Class 1H Must be smaller (f; < tmax)

Hard Class 2H Must be larger (f; > t; min)
Class 3H Must be equal (f; = tjva)

Class 4H Must be in range (timin < fi <t max)

according to their respective disciplinary competencies. More than one objective can be assigned to the same working
group. The multi-objective optimization process is centralized at the director level. The director coordinates the activities
between the working groups. The working groups collaborate to the resolution process by defining their preferences and
providing the target values for their objective functions. The following are the steps involved in the application of the new
interactive multi-objective approach.

Step 1. Each working group classifies his objective functions into four classes (Table 6).

Step 2. For the k objective functions, each working group solves its objective optimization problem individually
according to a category chosen in 1. The optimal solutions are X', i = 1, ..., k. The optimal values of the objective
functions are f;, i = 1, ..., k. The working groups know the best possible values of each objective function under their
control. These values are returned to the director. _

Step 3. The director evaluates the value of the other k-1 objective functions at the k optimal solutions X", i =1, ..., k,
and constructs kxk table of the objectives values as shown in Table 7. From this table, the director will know the best
and the worst possible values of each objective function f,i=1, ..., k that corresponding to bimin, bimax, 1 = 1, ..., k. of
each objective function (for a minimization problem). The approach proceeds by determining the reduced solvability set
denoted by D' where D' = {D| bimin, < bi < bimax, 1 = 1,..., k and D is the set of parameter values for which the problem is
solvable. The reduced solvability set will be used by the working groups to define their preference according to their
competencies.

Step 4. The director presents the reduced solvability set D' to the working groups to seek preferences for each
objective function.

0] For class 1S (minimization), the preferences are highly desirable (t';), desirable, (t';) tolerable (t'is),
undesirable, and (t";;) and highly undesirable (t"s).

(i)  For class 2S (maximization), the preferences are highly desirable (t’;;), desirable, (t,) tolerable (t73), undesirable,
and (t4) and highly undesirable (t's).

(i)  For class 3S (value is better), the preferences are highly desirable (t;), desirable (ti; and t*,), tolerable (ti; and
t"s), undesirable (t; and t'y), and highly undesirable (ts and t's).

(iv) For class 4S (range is better), the preferences are highly desirable (t;; and t*;;), desirable (t, and t*,), tolerable
(tizand t';3), undesirable (i, and t'is) and highly undesirable (ts and t's).

For multi-objective problem, the director has not all the necessary competencies to choose these values. It is why the
collaboration of the working groups is important. For example, the following scenario can be used to define the degrees
of desirability for a pure mathematical minimization problem. Supposing that t*; = biyin, t'is = Dimax @nd (Dimax — bimin)/4 = Vi,
the reduced solvability set D' can be divided as follows: t' = byyint o=t + Vi, t'iz = t'p + Vi, t'is = i3 + v, and t'5 = biyax.
For design problem, these values are set according to the working groups’ competencies and customer’s requirements.

Step 5. Set solution j = 1. Each working group selects the target value b; for each of their objective functions and
transfers these values to the director.

Step 6. The director uses the algorithm proposed by Dauer and Krueger [19] to solve the following multi-objective goal
programming problem and to obtain the Pareto-optimal solution X. This algorithm is detailed in Appendix A. The last
attainment problem for goal k twinned with the linear

physical programming is (Py)

Minimize dg
subjectto M(b) = {X e R"| g, (X)<b,,r=1, ..,m X>0}.....cccoeerrinnii. 3)



and for classes 1S, 3S, and 4S

Om+ (X) =fi(X) —di < by, 1<i<k,
di=d*i, I<i<k-1,
fi (X) < tis, I T P 4)
d¢>0
and for classes 2S, 3S, and 4S
Om+ (X) =i (X) —di> by, 1<ic<k,
di:d*i, |S|Sk—1,
fi (X) < tis, I T O 5)
dk > 0
For all classes
Kinin S X € K maxe « e eeenene et ettt e et et e e e et e et et (6)

Note. The constraints gn.i(X) are called the goals constraints.

This step permits to find a solution that meets as much as possible the working group’s preferences.

Step 7. If the working groups are satisfied with this solution, stop and go to Step 13, if not, go to Step 8. It is
suggested to generate a certain number of optimal solutions, which are Pareto optimal before stopping.

Step 8. The director formulates the KKT conditions of the problem (P,) and determines the values of the Kuhn Tucker
multipliers associated with the goals constraints: u,, r=1,..., k + m.

Step 9. According to the values u, and by using the algorithm presented in Appendix B, the director determines the
stability set of the first kind G(X;) which is the set of parameter values for which the optimal solution remains optimal.

Step 10. The director uses the sets subtraction algorithm presented in Appendix C to obtain the new reduced
solvability set {D’ -U',=1 G(X,)} which excludes the stability set. Steps 8, 9, and 10 are necessary to ensure that the work
groups will choose target values leading to other Pareto-optimal solution.

Step 11. If no values can be chosen in { D' -U',-; G(X;)}, stop and go to Step 13, otherwise go to Step 12.

Step 12. Set j = j + 1. The working groups select other target values b; € {D' -U',-; G(X;)} and go to Step 6. One can
use these rules to select the values and to obtain other Pareto optimal solutions.

() Rule no. 1: It is always necessary to improve the objective function having the worst value by choosing its
target value in a better zone and by sacrificing the other objectives by choosing their target values in a less desirable
zone. The aim of these choices is to obtain, if possible, all the objective’s values in the tolerable zone (or better).

(i) Rule no. 2: Once in the tolerable zone, try other values in this zone in order to obtain other Pareto-optimal
solutions. The selected values should cover all the zone. For example, choose a value at one end of the tolerable zone
and the other values at the other end. One can also try to choose one of the target values in the desirable zone while
leaving the other target values in the tolerable zone.

(iii) Rule no. 3: if it is impossible to follow the first rule due to the reduced solvability set, try all the possibilities to
find the best choice.

Step 13. The director presents all the Pareto-optimal solutions to the working groups and tries to get consensus for
the best compromise. If other solutions are necessary, go to Step 12.

Table 2. Degrees of desirability for class 1S

Class 1S—smaller is better (i.e., minimization)

<t i <fi<ti te<fi<tia te<fi<tiu tu<fi<tss
Highly Desirable Tolerable Undesirable Highly
Desirable undesirable

Table 3. Degrees of desirability for class 2S

Class 2S—larger is better (i.e., maximization)

ti <Ti<tis Ty <Ti<iis te<fi<tn te<fi<tu i <
Highly Desirable Tolerable Undesirable Highly desirable
undesirable

Table 4. Degrees of desirability for class 3S
Class 3S—value is better (i.e., seek value)
ts< fistu<fi<tips fistp<fi<tu<fistip<fistio<fi<stiu<fi<tls
Highly undesirable Undesirable Tolerable Desirable Highly desirable Desirable Tolerable Undesirable
Highly undesirable




Table 5. Degrees of desirability for class 4S
Class 4S—range is better (i.e., seek range)
U< ity <fi<tp S it <<ty <hi<ty <fi<t<fi<ts<fi<ty<fi<ts
Highly undesirable Undesirable Tolerable Desirable Highly desirable Desirable Tolerable Undesirable
Highly undesirable

Table 6. Classification of the objective functions

Class 1S Small is better (minimization)
Class 2S Larger is better (maximization)
Class 3S Value is better (seek value)
Class 4S Range is better (seek range)

Table 7. Table of objectives values

Optimal solutions _ .. Objective functions
x* (X £, (XY f, (X%
X2 f,r (X% £, (X% ... f1 (X9
X’ BOC) B R
NUMERICAL
Examples

In this section, the interactive multi-objective procedure is applied to two design problems. The first problem consists of
a set of simple analytical expressions for its objective and constraint functions and was presented by (Tappeta et al.
2000). This problem is chosen to illustrate the key features of the approach and to compare with the results obtained by
those authors. The second problem is the design of a two bar structure that is subjected to a force, F, at a point that
vertically defects by an amount d. In both cases, the IMOP approach is implemented in Matlab 7.0.4.365 (R14) and the
optimization process was conducted on Pentium D duo core 3.4 GHz and 2 GB RAM. The computational time is less
than 1 minute.

Test Problem 1.
This problem was introduced by Tappeta et al. [13] and has three design variables, three objective functions, and a

constraint. The problem definition in standard form and the application of the IMOP approach are as follows:
Minimize F (X) = {f, (X), f, (X), fs (X)}
subject to g; (X) = 12 = X% = x%,

X 3 0: ettt (7
where
f1 (X) = 10 = 1+ X% (1 + X5 + Xg) + X5 + X%3),
10
fo (X) =15 = (x31+ 235+ X% (2+ X3+ X3) + X%5),cvveeceeieiee e (8)
10

f3 (X) = 20 = (3+ x5 + 3x%; + X% (3 + X1 + X,)),
10
For this example, we suppose that f; (X) and f, (X) needed specific competencies so they are assigned to a working
group and f3 (X) need other competencies so it is assigned to another group. Therefore, the procedure proceeds with a

director and two working groups.

Step 1: Each working group classifies its objective functions:
Working group 1 classifies f; (X) in class 1S,
Working group 1 classifies f, (X) in class 1S,
Working group 2 classifies f3 (X) in class 1S.

Step 2: For the k objective functions, each working group solves its single optimization problem individually according



Table 8. Optimal values for the objective functions of test Problem 1

X! X1 X2 X3 fi

Working group 1 3.2539 0.8402 0.8402 3.5980

Working group 1 0.4651 3.4011 0.4651 3.7221

Working group 2 0.3169 0.3169 3.4350 3.5471
to the category chosen in 1. The optimal solutions are X, i = 1,..., k The optimal values of the objective functions are
noted to be f,, i =1, ..., k and are presented in Table 8.

Step 3: The director evaluates the value of the other k — 1 objective function at the k optimal solutions and constructs
the k x k table of the objective values. From Table 9, the director knows the best and the worst values for each objective
function. These values are noted to be b; min, bimaxs i = 1, ..., K. The approach proceeds by determining the reduced
solvability set D' = {{D}| bimin, < bi < bimax i = 1, ..., K} where D is the set of parameters for which the problem is solvable.

The reduced solvability set is

3.5980 < b; < 5.9405,

3.7221 < b, £ 10.9465,

3.5471 < b3 < 15.8771

Step 4: The director presents the reduced solvability set D' to the working groups to seek their preferences for each
objective function. These values are set according to the working groups’ knowledge and experience. For class 1S, each
working group determines the degrees of desirability t"; t';, "5 t'is, t's. Table 10 shows the degrees of desirability fixed
by (Tappeta et al. 2000). These degrees of desirability are used to be able to compare the results.

It is obvious that the degrees of desirability t*;, for the objective functions f, and f, could never be reached, since they
are not included in the reduced solvability set: the minimal value for the objective function f; is 3.5980 and for f, is
3.7221. This example shows that the degrees of desirability should not be given blindly to prevent the choice of
scenarios which are not feasible. Table 11 shows more realistic degrees of desirability. These degrees of desirability are
obtained by dividing the solvability set 3.5980 < b; < 5.9405, 3.7221 < b, < 10.9465 and 3.5471 < by < 15.8771 according
to this scenario: we suppose that the worst value is undesirable (t's = biva) and we calculate (b; max — bi min)/4 = v;to find
the following degrees of desirability: t'y; = t'; — Vi, ti2 = t'ig - Vi, t'i3 = 74 = Vi t'is = Dimae @nd t'is =t + Vi

We assume that preferences are uniformly distributed across the solvability set but it is not necessarily always the
case.

Step 5: Set solution j — 1. The working groups select the target values b; for each objective function. It is obvious that

Table 9. Objective function values table for test Problem 1

X1 X2 X3 f1 f, f3
Xt 3.2539 0.8402 0.8402 3.5980 10.9465 15.8166
X2 0.4651 3.4011 0.4651 5.9405 3.7221 15.8771
X3 0.3169 0.3169 3.4350 5.8929 10.8797 3.5471

Table 10. The degrees of desirability specified by Tappeta et al. (2000)

Criteria Class __HD D T U HU

t' t'n t'is thi t'is

fa 1S 3.0 425 6.0 7.5 9.0
f, 1S 3.7 7.0 9.25 11.8 125
fs 1S 6.0 12.0 150 18.0 20.0

HD: (highly desirable <t";;), D: (t"; < desirable <t",), T: (" < tolerable < t*;), ID:

(t'is < undesirable < t*), IA: (t', < highly undesirable < t';5)

Table 11. The working group’s preferences for test Problem 1

Criteria Class | D T 1D 1A

tha t' t'is thia t's

fi 1S 4.1836 4.7693 5.3549 5.9405 6.5261
f, 1S 5.5282 7.3343 9.1404 10.9465 12.7526
fa 1S 6.6296 9.7121 12.7946 15.8771 18.9596

HD: (highly desirable < t*;), D: (' < desirable < t',), T: (t';5 < tolerable < t'3), ID: (t';3 < undesirable < t'},),
IA: (t'4 < highly undesirable < t's).



Each working group wants to obtain the better value for their objective functions. So they will choose target values in
the highly desirable zone. We assume that the approach starts with the target values corresponding to t*;:

Working group 1 sets the target value of b; at 4.1836 (highly desirable),

Working group 2 sets the target value of b, at 5.5282 (highly desirable),

Working group 3 sets the target value of bz at 6.6296 (highly desirable).

Step 6: With the target values supplied by the working groups, the director uses the algorithm proposed by (Dauer
and Krueger et al., 1997) given in Appendix A to solve the multi-objective goal programming problem and to obtain a first
Pareto optimal solution X;:

X1 = (2.8568, 1.8775, 0.5598),

f, = 4.1836 (the value of f; is in the highly desirable zone),

f, = 9.4178 (the value of f, is in the undesirable zone),

f; = 16.7115 (the value of f; is in the highly undesirable zone).

Step 7: If the working groups are satisfied with this solution, stop and go to Step 13, if not, go to Step 8. For this case,
we assume that the working groups 1 and 2 are not satisfied since the values of their objective functions f, and f; are in
the undesirable and highly undesirable zones, respectively, and want to generate another solution. Go to Step 8. Steps
8, 9, and 10 are necessary to ensure that the work groups will choose target values leading to other Pareto-optimal
solution.

Step 8: The director formulates the KKT conditions of the problem and determines the values of the Kuhn Tucker
multipliers assomated with the goal constraints U, r=1, ..., k+m,

Up =1 .2771 % 10°, U3 = 5.6776 x ™ Uy =1 . ..o, (9)

Step 9: Accordlng to the values ur and by using the algorithm of Osman [20] given in Appendix B, the director
determines the stability set G(X;)

Given u, > 0 and g, = 4.1836 then b; = 4.1836,

Given uz > 0 and g; = 5.5282 then b, = 5.5282,

Given us > 0 and g4 = 6.6296 then u; = 6.6296.

Step 10: The director uses the sets subtraction algorithm proposed by Abdel Haleem et al., (1991) given in Appendix
C to obtain the new reduced solvability set {D’ = U1 G(X,)} given in Table 12.

Step 11: If no values can be selected in {D' - U\,=1 G(X,)} stop and go to Step 13, otherwise go to Step 12. In this
case, other values can be chosen in Table 10 so go to Step 12. _ _

Step 12: Set J = J + 1. The working groups select other target values for their objective function in b’ € {D' = U=
G(Xp)} and go to Step 6. The solutions obtained are presented in Table 13.

The third Pareto-optimal solution seems to be the best one because all the objective values match the target values
according to Table 10. This solution can be considered satisfactory and a good compromise for all the working groups.

Step 13: The director presents the Pareto-optimal solutions obtained to the working groups to select the best one for
everyone (stop). If other solutions are necessary go to Step 12. Although the solutions obtained in the six iterations are
Pareto optimal, the best Pareto-optimal solutions according to the working group’s preferences (desirability) are
solutions 3 and 4. These solutions can be retained for implementation.

Finally, it is also interesting to know if the solutions (Pareto points) obtained by this approach are close to certain
targeted aspiration points. To do this, we compare the obtained results with the Pareto-optimal results obtained by

Table 12. The reduced solvability set for test Problem 1

Set No. b; min b; max b, min b, max b3 min bs; max
1 3.5980 4.1836 3.7221 10.9465 3.5471 15.8771
2 4.1836 5.9405 3.7221 10.9465 3.5471 15.8771
3 4.1836 4.1836 3.7221 5.5282 3.5471 15.8771
4 4.1836 4.1836 5.5282 10.9465 3.5471 15.8771
5 4.1836 4.1836 5.5282 5.5282 3.5471 6.6296
6 4.1836 4.1836 5.5282 5.5282 6.6296 15.8771




Table 13. Pareto-optimal solutions generated by the approach

Solution j Target values b; Obijective function values f;

b; = 4.1836 (highly desirable) f; = 4.1836 (highly desirable)

b, = 5.5282 (highly desirable) f> = 9.4178 (undesirable)

bs; = 6.6296 (highly desirable) f3 =1 6.7115 (highly undesirable)
b, = 4.5 (desirable) f, = 4.5 (desirable)

b, =8 (tolerable) f, = 8.6799 (tolerable)

b; =13 (undesirable) f; =1 6.8579 (highly undesirable)
b; =5.2 (tolerable) f, = 5.2 (tolerable)

b, =9 (tolerable) f, =9 (tolerable)

b; =14 (undesirable) fz3 =1 4.8087 (undesirable)

b; =5.3 (tolerable) f, = 5.3 (tolerable)

b, =9.1 (tolerable) f> = 9.1 (tolerable)

bs; =12.5 (tolerable) f3 =1 4.4381 (undesirable)

b; =5.9 (undesirable) f; = 5.9 (undesirable)

b, = 8.9 (tolerable) f, = 8.9 (tolerable)

b; =12.6 (tolerable) f; =1 3.0147 (undesirable)

b; =5 (tolerable) f; =5 (tolerable)

b, =10 (undesirable) f> =1 0 (undesirable)

bz =12 (tolerable) f =1 3.9899 (undesirable)

Tappeta et al. (2000) at specific aspiration points. The comparison is presented in Table 14.

For a minimization problem, we want to find a better (smaller) solution than or equal the aspiration values. The symbol
(+) indicates that the solution obtained by our approach is worse (bigger) than the aspiration values, the symbol (=)
indicates that the solution obtained is the same (equal) as the aspiration values, and the symbol (-) indicates that the
solution obtained is better (smaller) than the aspiration values. The solutions obtained with our algorithm are considered
better than or equal to those found by Tappeta et al. (Tappeta et al., 2000) if the number of symbols (=) and (=) exceeds
the number of symbols (+). For the first solution, the number of symbols (=) and (=) is 2 for the IMOP algorithm and the
number of symbols (=) and (=) is 1 for Tappet et al. (Tappeta et al., 2000). These results are very encouraging because
they demonstrate that our approach can find solutions closer to the working Journal of Industrial Engineering

Table 14. Aspiration points and Pareto data from (Tappeta et al., 2000)
Aspiration values (target values) Pareto points (Tappeta et al., 2000)  Pareto points IMOP approach
I Zz 3 1 Zz 3 I 2 3

7.483  6.788 11.285 6.956 (<)  7.437 (+) 11.496 (+) 6.9722 (-) 6.7880 (=) 12.3239 (+)
5.400  6.788 16.927 5.413(+)  6.916 (+) 16.218 () 4.4679 (-) 5.1878 (-) 16.3795 ()
6.016  10.183 11.285 3.994 (-) 10.095 (<) 16.130 (+) 6.0002 () 9.9646 (=) 10.7528 (-)
3.933  10.183 16.927 4.708 (+) 8.689 () 16.259 (-) 3.9235(-) 10.0191(-) 16.4693 (-)

I

S w ’

Figure 2. Two-bar truss example

group’s requirements (aspiration values) than algorithms available in the literature.

Test Problem 2. The second problem is the design of a two-bar structure that is subjected to a force, F, at a point that
vertically deflects by an amount, d. This optimization problem involves the minimization of the mass, m, the normal
stress, s, and the vertical deflection, d, of a two-bar truss. The design variables are the diameter of the member, x; = a,
and the height, x, = h. Normal stress must be less than the buckling stress, as a constraint. A graphical representation of



the truss is shown in Figure 2 (Messac et al., 2002). The specific parameter values are as follows: F = 150kN, t =
2.5mm, structure width w = 750mm, mass density p = 7.8 x 10~ g/mm?, and elastic modulus E = 210000 N.mm?.
The problem’s formulation is as follows:

Minimize f; (X) = m = 2mptx; W + xzz,

f,(X)=s= F T X2,
ZTCtX]_ X2
f(X)=d= F (W +x,9)%?
2nEtx, X2z
subjectto g, (X)= F W+ X" — 4 ZF E t“+x,°<0,
27tX 1 Xo 8 66 + Xo
1<x, <100,
TO S Xo S 1000 .. e (10)
Table 15. Optimal values for the objective function of test Problem 2
X ' X1 X2 f;
Working group 1 39.2944 335.6810 395
Working group 2 100 1000 119.3662
Working group 3 100 1000 0.8881
Table 16. Objective function values table for test Problem 2
X1 X2 fy f f3
X+ 39.2944 335.6810 3956 5956
X2 100 1000 15315 119.3662 0.8881
X3 100 1000 15315 119.3662 0.8881

For this example, we assume that each objective function needs specific competencies so one objective function is
assigned to a working group. The procedure proceeds with a director and three working groups.

Step 1. Each working group classifies its objective function:

Working group 1 classifies f; (X) in class 1S,

Working group 2 classifies f, (X) in class 1S,

Working group 3 classifies f; (X) in class 1S.

Step 2: Each working group solves its single optimization problem according to the category chosen in 1. The optimal
solutions are X', i = 1,..., 3. The optimal values of the objective functions are noted to be f,, i = 1, ..., 3 and are
presented in Table 15.

Step 3: The director evaluates the two other objective functions at the three optimal solutions and constructs the 3 x3
table of the objective functions’ values. From Table 16, the director knows the best and the worst values for each
objective function. These values are noted to be bj min, bimax | = 1, ..., 3. The approach proceeds by determining the
reduced solvability set denoted by D' where D' = {D | bj min < b < bimax, i = 1, ..., 3} and D is the set of parameters for
which the problem is solvable.

The reduced solvability set is

3956 < b; < 15315,

119.3662 < b, < 595,

0.8881 < b;<6.

Table 17. Working group’s preferences for test Problem 2

Function Class HD D T U HU
t th t'is t ts

fi 1S 4450 4550 4650 4750 4850

fy 1S 370 390 400 450 500

fs 1S 2 2.5 3 35 4

HD: (highly desirable < t;;), D: (t'; < desirable < t;,), T: (t', < tolerable < t*), ID: (t'is < undesirable < t"), 1A: (t'4 <
highly undesirable < t"s).



Step 4: The director presents the reduced solvability set D' to the working groups to seek their preferences for each
objective function. These values are set according to the working groups’ knowledge and experience. For class 1S, each
working group determine t';;, t',, t's, t'is, t's. Table 17 shows the degrees of desirability determined by Messac and
Ismail- Yahaya [21]. These degrees of desirability are used to be able to compare the results. These degrees of
desirability are realistic because they are inside the reduced solvability set determined in Step 3.

Step 5: Set solution j = 1. Each working group selects the target values b, for its objective function. We assume that the
working groups will not make a compromise, and they will choose target values in the highly desirable zone. The
approach starts with the target value corresponding to t';:

Working group 1 sets target value b, at 4450 (highly desirable),

Working group 2 sets target value b, at 370 (highly desirable),

Working group 3 sets target value b; at 2 (highly desirable).

Step 6: With the target values supplied by the working groups, the director uses the algorithm proposed by Dauer and
Krueger [19] given in Appendix A to solve the multi-objective goal programming problem and to obtain a first Pareto
optimal solution X;:

X1 = (37.83925 99.0083),

f, = 445 0 (the value of f; is in the highly desirable zone),

f, = 4 04.3889 (the value of f; is in the undesirable zone),

f; =2 .9618 (the value of f; is in the tolerable zone).

Step 7: If the working groups are satisfied with this solution, stop and go to Step 13, if not, go to Step 8. For this
problem, we assume that working group 2 is not satisfied since the value of its objective function is in the undesirable
zone and wants to generate another solution. Go to Step 8. Steps 8, 9, and 10 are necessary to ensure that the working
groups will choose target values leading to other Pareto-optimal solution.

Table 18. The reduced solvability set for test Problem 2

Set no: b; min b; max b, min b, max bz min b; max
1 3956 4450 119 595 1 6
2 4450 15315 119 370 1 6
3 4450 15315 370 595 1 2

Table 19. Pareto-optimal solutions generated for Problem test 2

Solution Target Values b; Objective Function VValues f;
b; =445 O (highly desirable) f1 =445 0O (highly desirable)
b, =3 70 (highly desirable) f> =4 04.3889 (undesirable)
bs; =2 (highly desirable) f3 =2 .9618 (tolerable)

b; =4 600 (tolerable) f; =4 600 (tolerable)

b, =3 95 (tolerable) f, =3 86.1490 (desirable)

bz =1 .8 (highly desirable) fz3 =2 .7917 (tolerable)

b; =45 65 (tolerable) f, =45 65 (tolerable)

b, =3 69 (highly desirable) f, =3 90.0621 (tolerable)

b-. =2 .8 (tolerable) 2 =2 .8269 (tolerable)

Step 8: The director formulates the KKT conditions for the problem and determines the values of the Kuhn Tucker
multipliers associated with the goal constraints u,, r=1,..., k+m

Uy =0, U3 =0, Us = 0. oo e (11)

Step 9: According to the values u,, and by using the algorithm of (Osman, 1979) given in Appendix B, the director
determines the stability set G(X):

Given u, = 0 and g, = 4450 then b; = 4450,

Given uz = 0 and g; = 370 then b, = 370,

Given us; =0 and g4 = 2 then bs = 2.

Step 10: The director uses the sets subtraction algorithm proposed by (Abdel Haleem et al., 1991) given in Appendix C
to obtain the reduced solvability set {D’' = U',=; G(X,)} given in Table 18.

Table 20. Results’ comparison, Ismail-Yahaya et al., 2002

Two-bar structure Results IMOP approach Results of Messac and Characteristics
Diameter (x1) 3.80 cm 3.80 cm

Height (x2) 64.2 cm 63.26 cm

Mass (f1) 4.600 kg (Tolerable) 4.565 kg (Tolerable)
Normal stress (f2) 386 N (desirable) 390 N (tolerable)

Vertical deflection (f3) 2.7917 (tolerable) 2.826 (tolerable)




Step 11: If no target values can be chosen in {D' - U\,-1 G(X,)} stop and go to Step 13, otherwise go to Step 12. In this
case, other values can be chosen in Table 18 so go to Step 12. A .

Step 12: Setj =j + 1. The working groups select other target values for the goal vector b' e {D’ - U',-; G(X;)} and go
to Step 6. Some solution results are presented in Table 19.

The second Pareto-optimal solution seems to be the best one because all the objective values are in the tolerable or
desirable zone according to Table 17. This solution can be considered satisfactory and a good compromise for all the
working groups.

Step 13: The director presents the Pareto-optimal solutions to the working groups to select the best solution for
everyone (stop). If other solutions are necessary go to Step 12.

Table 20 shows the results obtained for the characteristics of the two-bar structure. For the normal stress function, the
result obtained with the IMOP approach is in the desirable zone while the solution obtained by (Messac et al., 2002) is
in the tolerable zone according Table 17. This means that working group 2 is better satisfied with our solution. For the
other functions, both results are in the same zone according Table 17. The difference between the results is that our
solution is obtained by an interactive and collaborative process between the DM and the working groups and it is
possible to generate several design scenarios (Pareto-optimal solutions) without changing the degrees of desirability.
(Messac et al., 2002) provide information for only one design scenario (i.e., a single Pareto solution). If we want another
solution we have to change the degrees of desirability. This IMOP algorithm has permitted to convergence to a solution
that is acceptable for all the working groups. As shown, this procedure offers more flexibility for the director and his/her
working groups.

CONCLUSION

The IMOP approach developed in this paper is an extension of the interactive nonlinear goal programming algorithm of
(Abdel Haleem et al., 1991). The first contribution of the IMOP algorithm is the ability to define a reduced set of target
values that can be divided into degrees of desirability to capture the working groups’ preferences. This is an important
contribution because it is a challenging issue in multi-objective optimization. It also subtracts the stability set from the
reduced set of target values at each iteration, thus ensuring a different Pareto-optimal solution each time. Also, the
distribution of the objective functions among working groups is beneficial to consider disciplinary knowledge and
experience in determining the degrees of desirability. The IMOP approach generates as many new Pareto optimal
solutions (design alternatives) as needed. These solutions meet as much as possible the requirements of the working
groups. Also, the application of the decision that rules for choosing the target values permits the convergence to Pareto-
optimal solutions in the same desirability zone (or better) for all the objectives.

The approach has been successfully applied to two problems. It is true that these problems are simple but they make
the application of the IMOP approach clear. In this paper, the multi-objective optimization process is centralized. Future
work is also planned to use the IMOP algorithm in the case where the multi-objective optimization process is not under
the control of the director but distributed to the working groups. We will be interesting by multidisciplinary optimization.
Multidisciplinary optimization is a methodology used for designing complex systems that must satisfy many constraints
and that must be carried out in a decentralized environment. Multidisciplinary optimization assumes a form of
collaboration between the working groups because the decision variables are under the control of several working
groups. The multidisciplinary optimization approaches are:

Concurrent subspace optimization (Sobieszczanski-Sobieski et al., 1997), (Kroo, 2004) Bilevel integrated system
synthesis (Kroo, 2004), (Sobieszczanski-Sobieski et al., 2002) Collaborative optimization (Sobieszczanski-Sobieski et
al., 1997), (Kroo, 2004), (Braun, 1996) and Analytical Target Cascading method (Min, 2003). We are working to combine
the IMOP algorithm with one of these optimization approaches.
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APPENDICES

A. Algorithm of (Dauer et al., 1977)
We consider the classical nonlinear goal programming problem with k goals (objective functions), subject o a set of
constraints {M):

(NLGP) fl (X) < bl

f, X)< b,

fi (X) < by

SubjecttoM={X e R"| g (X)<0,r=1,...,m X>0} ....ccceeeriirinerennnn. (A.1)

where X is the vector of decision variables {X;, X, ..., Xo} and b;, i = 1, ..., k represent aspiration levels for objectives

fi(X), i=1, ..., k. The goals are arranged according to their priority levels, that is, if i < j then goal i, f; (X) < b; has a higher
priority level than goal j, f; (X) < b;. It is well known that the fundamental premise of goal programming is that goal i is
sought to attain without regard to the attainability of the goals with lower priority level j. This idea has been used by
Dauer and Krueger to develop an algorithm for solving linear, nonlinear, and integer goal programming problems. The
algorithm solves k singles objective function problems successively. The first and last problems are as follows:
Solving the attainment problem for goal 1, P, is:
Py Minimize d;
Subjectto f; (X) - dy < b
o X)<0, r=1,...,m
1 20, X > 0, (A.2)
where d, is the positive deviation for objective f;(X) from its goal b;. The solution of this problem is d;’, which is the over
attainment of goal 1.
The last attainment problem for goal k, Py is
Py Minimize dg
Subject to f(X)—di<h, 1<i<k

dy=dy 1<i<k-1
o X)=0,r=1,...,m,



Ok >0, X > 0. oot (A.3)
By letting d; = Xn+k, i = 1, ..., k the last attainment problem can be written in the form
P'(G): Minimize Xn+
Subjectto g, (X)<b,r=1,....m
xa:xa*, n+l<a<sn+k-1
Xnek =0, Xi >0, i =1, o M, (A.4)
where X e R™  and d/, 1<i<k—1isreplaced by x,, n+ 1 <d<n+k— 1. The solution of this problem denoted by X =
(X1, X2, ..., Xn+k) IS the optimal solution for the NLGP problem under consideration. Problem P'(G) can be considered as a
parametric programming problem having parameters b, in the RHS of the constraints and can be written in the form
P (G): Minimize f (X) = Xn«
Subjectto M (b) ={X e R™* | g, (X)<b,r=1, ... k+m, X>0}, .ccvn...... (A.5)
where b, is any arbitrary real number, and x,, n + 1 < a < n + k = 1 have been directly substituted in the inequality
constraints of P'(G). The solution of problem P(G) is thus the same as the solution of the P'(G) and NLGP, and the
stability sets of problem P(G) can be calculated.
B. The Determination of the Stability Set
Osman (1977) presented the following algorithm for the determination of the stability set of the first kind:

(1) Select an arbitrary b € D and solve P(G) to obtain X and formulate the K.K.T. conditions.
(2) Determine the values of u,, using any available algorithm.
) According to the values of u,, the stability set of the first kind G(X) can be determined as follows:

(®) Foru=0,r=1,....,k+m, Gy (X)={b| b, =g, (X)}

(b) Foru>0,r=1,...,k+m, Gy (X)={b| b, =g (X)}

(c) Foru=0,redc{l,...k+m} u>0,regJ, G (X)={b|b2g (X), red, b =g (X), red}, Gs(X) = Upossibles
GJ (X).

C. The Sets Subtraction Algorithm (Abdel Haleem, 1991)

Letb;, i=1, ..., k be the elements of the universal set V in the k dimensional space. V is considered a universal set from
which some other sets S;, i = 1, ..., 1 are subtracted.
Let Vs ={ Ui=1S,i=1, ..., I) be the subtracted set. The elements contained in the universal set and the subtracted sets

are used to determine the lower and the upper bounds for each set in each dimension. These values represent the input
to the sets subtraction algorithm. Each set is represented as a record containing the lower and the upper bounds for
each dimension as shown in Table 2.

The function of the algorithm is to get the difference between the universal set and the subtracted set {V — Vs}. This
difference is defined as those elements that are contained in the set V and not contained in V. The subtraction is done
in steps. First, the algorithm gets the difference between V and Vg, where Vs = Sy, thus getting {V — S;}. Then the set S,
is subtracted from {V — Sy}, thus getting {{V — S1}- S;} and Vs = U%-; S;, and so on.



