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Abstract 
 

This paper presents a new procedure to solve multi-objective problems, where the objectives are 
distributed to various working groups and the decision process is centralized. The approach is 
interactive and considers the preferences of the working groups. It is based on two techniques: an 
interactive technique that solves multi-objective problems based on goal programming, and a 
technique called “linear physical programming” this considers the preferences of the working 
groups. The approach generates Pareto-optimal solutions. It guides the director in the determination 
of target values for the objective functions. The approach was tested on two problems that present its 
capacity to generate Pareto-optimal solutions and to show the convergence to compromise solutions 
for all the working groups. 

 
Keywords: Multi-Objective, Product Design, Programming, Optimization, Design. 

 
INTRODUCTION 
 
The process of product design is often organized in a hierarchical structure where the specialists are separated by 
discipline in several working groups. As shown in Figure 1, the working groups are supervised by a director who 
coordinates the design activities. The role of the director is to collect information provided by the groups and to use 
computational method to finding an optimal design. The working groups are considered as experts that have the 
technical knowledge in their proper discipline. 
According to their competencies, each working group is responsible of achieving specific design objectives expressing 
the customer’s requirements. Often these objectives are functions of the same set of design variables and in certain 
cases, they may be. For that reason, it is necessary to find an optimization procedure that takes into consideration that 
knowledge and includes it in the solution. 
In this paper, we develop a new Interactive Multi-objective approach taking into account the working group’s 
Preferences (IMOP). The original contributions of the IMOP algorithm are the as follows. 
(i) It has the ability to define a reduced set of target values that can be divided into degrees of desirability to 
capture the working groups’ preferences. This is an important contribution because it is a challenging issue in multi-
objective optimization. 
(ii) It generates Pareto-optimal solutions corresponding to the working groups’ preferences. 
(iii) It subtracts the stability set from the reduced set of target values at each iteration, thus ensuring a different 
Pareto-optimal solution each time. 
The proposed approach is particularly interesting when the decision process is centralized and involves many working 
groups who are collaborating in order to find a best compromise solution. 

http://www.standresjournals.org/journals/SSRE
mailto:oboscos@gmail.com
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Figure1. Organizational structure in product design 

 
Multi- objective problem and pareto-optimal concept 
 
The purpose of a general multi-objective optimization problem is to find the design variables that optimize a vector 
objective function F (X) = {f1(X), f2(X) …, fk(X)} over the feasible design space. The minimization problem formulation in 
standard form is as follows (Messac et al., 1996): 

Minimize F (X) = {f1(X), f2(X) …, fk(X)} 
subject to hs (X) = 0  s = 1, … , t. 
  gr (X) > 0,  r = 1, …, m, 
  X

1
 < X < X

u
.  ……………………………………………………………. (1) 

The aim of solving a multi-objective problem is to get a Pareto-optimal solution or a set of Pareto-optimal solutions. 
Conceptually, a Pareto-optimal solution is one which is not dominated by any other feasible solution. Mathematically, for 

a minimization problem with k objective functions fi, i =  1,…, k, a vector X∗ is Pareto-optimal if there is no other feasible 
X such that f (X) < f(X

x
), meaning that fi (X) < fj(X

x
) for all i = 1, …, k with strict inequality for at least one i  (Tappeta et al., 

2000). In general, the optimal solutions obtained by the individual optimization of the objectives are not the same. It is 
then necessary to find solutions to the multi-objective problem which are Pareto-optimal. 

There are several techniques for solving multi-objective optimization problems. Some methods have been developed 
to find an exact Pareto set, or an approximation of it, inside of which one of the generated Pareto optimal solutions is 
chosen for implementation. These methods include compromise programming (Vassilev et al., 2001), the weight 
method, and the constraints method (Tappeta et al., 2001). Several metaheuristics approaches have also been used to 
solve multi-objective problems like simulated annealing (Miettinen et al., 2006), (Abdel Haleem et al., 1991) particles 
swarm optimization (Lamghabbar et al., 2004) and evolutionary algorithms (Dauer et al., 1997), (Osman 1979). 

However, as the number of competing objectives increases, the problem of finding the best compromise solution 
becomes increasingly complex. Hence, it can become overwhelming to analyze the entire Pareto-optimal solution set to 
select one solution for implementation. It becomes attractive to reduce the size of the solution set, and to assist the 
decision maker in selecting a final solution (Sobieszczanski-Sobieski et al., 1997). Some methods attempt to quantify 
the decision maker’s preferences, and with this information, the solution that best satisfies the decision maker’s 
preferences is then identified. These methods include among others goal programming, and linear physical 
programming (Tappeta et al., 1998). Linear physical programming is a method for generating a preferred Pareto solution 
during multi-objective optimization. It is an extension of goal programming. The initial development of the physical 
programming methodology is presented in Messac et al. (2002). Physical programming captures the decision maker’s 
preferences, a priori, in a mathematically consistent manner using a preference function. The decision maker (DM) 
classifies each objective function into the four so and the four hard classes as shown in Table 1. 

The DM specifies the degrees of desirability (t
-
i5, t

-
i4, t

-
i3, t

-
i2, t

-
i1, and/or t

+
i5, t

+
i4, t

+
i3, t

+
i4, t

+
i5,) for each objective function fi in 

the soft category. For classes 1S through 4S, there are, respectively, five, nine, and ten such values as shown in Tables 
2, 3, 4, and 5. 

For classes 1H through 4H, these values are, respectively, 
tl.max, tl,min, tl, val, and tl.max,. The physical programming method involves converting a multi-objective problem into a 

single objective problem by using preference functions that capture the DM’s preferences. Given the DM’s input in the 
form of range boundaries (or targets) for each objective, Messac et al. (2002), suggest an algorithm to generate the 
weights ẁ

-
is and ẁ

+
is. The following problem is then solved (d

-
is and d

+
is are the deviational variables): 
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  Min  J = Σ Σ (
-
isd

-
is+

+
isd

+
is) 

 
 
 
subject to f (X)i – d

+
is < t

+
i(s – 1) 

 iclasses 1S, 3S, 4S; i = 1, 2, …, k; 
    s = 2, …, 5,  

d
+

is > 0  iclasses 1S, 3S, 4S; 
i = 1, 2, …, k; s = 2, …, 5,  

 fi (X) < t
+

i5 i  classes 2S, 3S, 4S; 
   i = 1, 2, …, k, 

 fi (X) + d
-
is > t

-
i(s – 1), iclasses 2S, 3S, 4S; 

   i = 1, 2, …, k; s = 2, …, 5, 

 d
-
is > 0, i  classes 1S, 3S, 4S; 

   i = 1, 2, …, k; s = 2, …, 5, 

 fi (X) > t
-
i5, i  classes 2S, 3S, 4S; 

    i = 1, 2, …, k, 

 fi (X) < tl,max,  l  class 1H; 
    l = 1, 2, …, L, 

 fi (X) < tl,min,  l  class 2H; 
    l = 1, 2, …, L, 

 fi (X) < tl,val,  l  class 3H; 
    l = 1, 2, …, L, 
  

tl,min < fi (X) < tl,max, l  class 4H; 
     l = 1, 2, …, L, 
 Xmin < X < Xmax………………………………………………………… (2) 

d-
is,d

+
is,X 

 

k     5 

i=1 s=2 

 
 
The limitation of the physical programming is that it requires a priori selection of range parameters for each of the 
objective functions and provides information for only one design scenario (i.e., a single Pareto solution). Tappeta et al. 
(1998) have twinned linear physical programming with an interactive algorithm (Tappeta et al., 2000). Their algorithm 
finds a Pareto solution and can generate other Pareto designs in the neighbourhood of the current Pareto solution. No 
means are provided to help the DM to specify his/her initial preferences in the form of region limits defined in physical 
programming. 

Some authors have suggested several interactive multi-objective optimization methods [Tappeta et al., 1997), 
(Vassilev et al., 2001), (Miettinen et al., 2006). These methods allow the decision maker to express his/her preferences 
by using a reference point or by classifying the objectives, functions. The disadvantages of using traditional multi-
objective methods are as follows (Tappeta et al., 1999): (1) require a priori selection of weights or targets for each of the 
objective functions, (2) provide only a single Pareto-optimal solution, and (3) are unable to generate proper Pareto-
optimal points for non convex problems (the weights method). Abdel Haleem et al (1991) developed an interactive 
nonlinear goal programming algorithm (INLGP) that helps the decision maker to determine reference points for the 
goals. The decision maker does not need to do any ranking of classification of these goals. The advantages of this 
INLGP algorithm are as follows: 

(1) It reduces the parametric space of the target values by limiting each parameter with minimum and maximum 
values rather than by choosing any random values from the whole parametric space, and  

(2) The algorithm is guaranteed to generate Pareto-optimal solutions at each iteration. The INLGP algorithm was used 
for the design of a low-pass electrical circuit (Lamghabbar et al., 2004). However, no means are provided to divide the 
reduced parametric space. Realizing these limitations, an interactive multi-objective approach is proposed which 
attempts to address the issues mentioned above. 
 
 
METHODOLOGY 
 
An interactive multi-objective approach taking into account the working groups’ preferences (imop approach) 
 
The IMOP approach is based on the interactive nonlinear goal programming algorithm (INLGP) of (Abdel Haleem et al., 
1991) combined to the linear physical programming introduced by (Messac et al. 1996). The IMOP approach has the 
following advantages:  
(1) It provides means to capture the working group’s preferences,  
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(2) It offers the possibility of interaction between the director and his/her working groups,  
(3) It generates several Pareto-optimal solutions (several design scenarios), and  
(4) It fits with the industries organizational structure. 
Before using the IMOP approach, it is necessary to distribute the objective functions among the working groups 
 

Table 1. Objective function classification 
 

 
 

Class 1S   Small is better (minimization) 
Soft  Class 2S   Larger is better (maximization) 
Class 3S   Value is better 
Class 4S   Range is better 
Class 1H   Must be smaller (f1 ≤ tl.max) 
 
Hard  Class 2H   Must be larger (f1 > tl,min) 
Class 3H   Must be equal (f1 = tl,val) 
Class 4H   Must be in range (tl.min ≤ fl  ≤ tl,max) 
 
 

 
 
according to their respective disciplinary competencies. More than one objective can be assigned to the same working 
group. The multi-objective optimization process is centralized at the director level. The director coordinates the activities 
between the working groups. The working groups collaborate to the resolution process by defining their preferences and 
providing the target values for their objective functions. The following are the steps involved in the application of the new 
interactive multi-objective approach. 

Step 1. Each working group classifies his objective functions into four classes (Table 6). 
Step 2. For the k objective functions, each working group solves its objective optimization problem individually 

according to a category chosen in 1. The optimal solutions are X
*i
, i = 1, …, k. The optimal values of the objective 

functions are fi
*
, i = 1, …, k. The working groups know the best possible values of each objective function under their 

control. These values are returned to the director. 
Step 3. The director evaluates the value of the other k-1 objective functions at the k optimal solutions X

*i
, i = 1, …, k, 

and constructs kxk table of the objectives values as shown in Table 7. From this table, the director will know the best 
and the worst possible values of each objective function fi

*
, i = 1, …, k that corresponding to bimin, bimax, i = 1, …, k. of 

each objective function (for a minimization problem). The approach proceeds by determining the reduced solvability set 
denoted by D′ where D′ = {D| bimin, ≤ bi ≤ bimax, i = 1,…, k and D is the set of parameter values for which the problem is 
solvable. The reduced solvability set will be used by the working groups to define their preference according to their 
competencies. 

Step 4. The director presents the reduced solvability set D′ to the working groups to seek preferences for each 
objective function. 

(i) For class 1S (minimization), the preferences are highly desirable (t
+

i1), desirable, (t
+

i2) tolerable (t
+

i3), 
undesirable, and (t

+
i4) and highly undesirable (t

+
i5). 

(ii) For class 2S (maximization), the preferences are highly desirable (t
-
i1), desirable, (t

-
i2) tolerable (t

-
i3), undesirable, 

and (t
-
i4) and highly undesirable (t

-
i5). 

(iii) For class 3S (value is better), the preferences are highly desirable (t
-
il), desirable (t

-
i2 and t

+
i2), tolerable (t

-
i3 and 

t
+

i3), undesirable (t
-
i4 and t

+
i4), and highly undesirable (t

-
i5 and t

+
i5). 

(iv) For class 4S (range is better), the preferences are highly desirable (t
-
i1 and t

+
i1), desirable (t

-
i2 and t

+
i2), tolerable 

(t
-
i3 and t

+
i3), undesirable (t

-
i4 and t

+
i4) and highly undesirable (t

-
i5 and t

+
i5). 

For multi-objective problem, the director has not all the necessary competencies to choose these values. It is why the 
collaboration of the working groups is important. For example, the following scenario can be used to define the degrees 
of desirability for a pure mathematical minimization problem. Supposing that t

+
il = biMin, t

+
i5 = biMax and (biMax – biMin)/4 = vi, 

the reduced solvability set D′ can be divided as follows: t
+

il = biMin,t
+

i2 = t
+

il + vi, t
+

i3 = t
+

i2 + vi, t
+

i4 = t
+

i3 + vi, and t
+

i5 = biMax. 
For design problem, these values are set according to the working groups’ competencies and customer’s requirements. 

Step 5. Set solution j = 1. Each working group selects the target value bi for each of their objective functions and 
transfers these values to the director. 

Step 6. The director uses the algorithm proposed by Dauer and Krueger [19] to solve the following multi-objective goal 
programming problem and to obtain the Pareto-optimal solution X. This algorithm is detailed in Appendix A. The last 
attainment problem for goal k twinned with the linear 

physical programming is (Pk) 
Minimize dk 

subject to M(b) =  {X  R
n 
| gr (X) < br, r = 1, …, m, X > 0}……………………..(3) 
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and for classes 1S, 3S, and 4S 
  gm+I (X) = fi (X) – di < bi,   1 < i < k,  
  di = d

*
i,  I < i < k – 1, 

  fi (X) < ti5,  I < i < k, ……………………………………………………(4) 
   dk > 0 
and for classes 2S, 3S, and 4S 
gm+I (X) = fi (X) – di > bi,   1 < i < k,  
  di = d

*
i,  I < i < k – 1, 

  fi (X) < ti5,  I < i < k, ……………………………………………………(5) 
   dk > 0 
For all classes 
Xmin ≤ X < Xmax. ………………………………………………………………….(6) 
 
Note. The constraints gm+i(X) are called the goals constraints. 

This step permits to find a solution that meets as much as possible the working group’s preferences. 
Step 7. If the working groups are satisfied with this solution, stop and go to Step 13, if not, go to Step 8. It is 

suggested to generate a certain number of optimal solutions, which are Pareto optimal before stopping. 
Step 8. The director formulates the KKT conditions of the problem (Pk) and determines the values of the Kuhn Tucker 

multipliers associated with the goals constraints: ur, r = 1,…, k + m. 
Step 9. According to the values ur and by using the algorithm presented in Appendix B, the director determines the 

stability set of the first kind G(Xj) which is the set of parameter values for which the optimal solution remains optimal. 
Step 10. The director uses the sets subtraction algorithm presented in Appendix C to obtain the new reduced 

solvability set {D′ −U
j
p=1 G(Xp)} which excludes the stability set. Steps 8, 9, and 10 are necessary to ensure that the work 

groups will choose target values leading to other Pareto-optimal solution. 
Step 11. If no values can be chosen in { D′ −U

j
p=1 G(Xp)}, stop and go to Step 13, otherwise go to Step 12. 

Step 12. Set j = j + 1. The working groups select other target values bi  {D′ −U
j
p=1 G(Xp)} and go to Step 6. One can 

use these rules to select the values and to obtain other Pareto optimal solutions. 
(i) Rule no. 1: It is always necessary to improve the objective function having the worst value by choosing its 

target value in a better zone and by sacrificing the other objectives by choosing their target values in a less desirable 
zone. The aim of these choices is to obtain, if possible, all the objective’s values in the tolerable zone (or better). 

(ii) Rule no. 2: Once in the tolerable zone, try other values in this zone in order to obtain other Pareto-optimal 
solutions. The selected values should cover all the zone. For example, choose a value at one end of the tolerable zone 
and the other values at the other end. One can also try to choose one of the target values in the desirable zone while 
leaving the other target values in the tolerable zone. 

(iii) Rule no. 3: if it is impossible to follow the first rule due to the reduced solvability set, try all the possibilities to 
find the best choice. 

Step 13. The director presents all the Pareto-optimal solutions to the working groups and tries to get consensus for 
the best compromise. If other solutions are necessary, go to Step 12. 
 

Table 2. Degrees of desirability for class 1S 
  

Class 1S—smaller is better (i.e., minimization) 
fi < t

+
i1             t

+
i1 < fi < t

+
i2  t

+
i2 < fi < t

+
i3  t

+
i3 < fi < t

+
i4  t

+
i4 < fi < t

+
i5 

Highly    Desirable   Tolerable   Undesirable  Highly  
Desirable                     undesirable 
 
 
 

 
 

Table 3. Degrees of desirability for class 2S 
  

Class 2S—larger is better (i.e., maximization) 
t
-
i1 < fi < t

-
i4   t

-
i4 < fi < t

-
i3             t

-
i3 < fi < t

-
i2  t

-
i2 < fi < t

-
i1  t

-
il < fi  

Highly                Desirable   Tolerable   Undesirable         Highly desirable  
                            undesirable 
 
 

 
 

Table 4. Degrees of desirability for class 3S  
Class 3S—value is better (i.e., seek value) 
t
-
i5 <  fi < t

-
i4 < fi < t

-
i3 <  fi < t

-
i2 < fi < t

-
i1 < fi < t

+
i2 < fi < t

+
i3 < fi < t

+
i4 < fi < t

+
i5 

Highly undesirable Undesirable Tolerable Desirable Highly desirable Desirable Tolerable Undesirable 
Highly undesirable 
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Table 5. Degrees of desirability for class 4S  
Class 4S—range is better (i.e., seek range) 
t
-
i5 <  fi < t

-
i4 < fi < t

-
i3 <  fi < t

-
i2 < fi < t

-
i1 < fi < t

+
i1 < fi < t

+
i2 < fi < t

+
i3 < fi < t

+
i4 < fi < t

+
i5 

Highly undesirable Undesirable Tolerable Desirable Highly desirable Desirable Tolerable Undesirable 
Highly undesirable 
 
 

 
 

Table 6. Classification of the objective functions  
Class 1S    Small is better (minimization) 
Class 2S    Larger is better (maximization) 
Class 3S    Value is better (seek value) 
Class 4S    Range is better (seek range) 
 
 

 
 

Table 7. Table of objectives values  
Optimal solutions   Objective functions 
X

*1
   f1

*
(X

*1
) f2

*
(X

*1
) … f1

*
(X

*1
) 

X
*2

   f1
*
(X

*2
) f2

*
(X

*2
) … f1

*
(X

*2
) 

…      …      …  …     … 
X

*i
   f1

*
(X

*i
) f2

*
(X

*i
) … f1

*
(X

*i
) 

 
 

 
 
NUMERICAL 
 
Examples 
 
In this section, the interactive multi-objective procedure is applied to two design problems. The first problem consists of 
a set of simple analytical expressions for its objective and constraint functions and was presented by (Tappeta et al. 
2000). This problem is chosen to illustrate the key features of the approach and to compare with the results obtained by 
those authors. The second problem is the design of a two bar structure that is subjected to a force, F, at a point that 
vertically defects by an amount d. In both cases, the IMOP approach is implemented in Matlab 7.0.4.365 (R14) and the 
optimization process was conducted on Pentium D duo core 3.4 GHz and 2 GB RAM. The computational time is less 
than 1 minute. 

Test Problem 1.  
This problem was introduced by Tappeta et al. [13] and has three design variables, three objective functions, and a 

constraint. The problem definition in standard form and the application of the IMOP approach are as follows: 
Minimize F (X) = {f1 (X), f2 (X), f3 (X)} 
subject to g1 (X) = 12 − x

2
1 − x

2
2, 

X > 0. …………………………………………………………………………………(7) 
where 
f1 (X) = 10 − (x

3
1+ x

2
1 (1 + x2 + x3) + x

3
2 + x

3
3), 

                                          10 
 
f2 (X) = 15 − (x

3
1+ 2x

3
2 + x

2
2 (2 + x1 + x3) + x

3
3),……………………………………(8) 

                                         10 
 
f3 (X) = 20 − (x

3
1+ x

3
2 + 3x

3
3 + x

2
3 (3 + x1 + x2)),   

                                       10 
For this example, we suppose that f1 (X) and f2 (X) needed specific competencies so they are assigned to a working 

group and f3 (X) need other competencies so it is assigned to another group. Therefore, the procedure proceeds with a 
director and two working groups. 

 
Step 1: Each working group classifies its objective functions: 
Working group 1 classifies f1 (X) in class 1S, 
Working group 1 classifies f2 (X) in class 1S, 
Working group 2 classifies f3 (X) in class 1S. 
 
Step 2: For the k objective functions, each working group solves its single optimization problem individually according 
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Table 8. Optimal values for the objective functions of test Problem 1  

X∗i
                 x1       x2       x3        fi

* 

Working group 1  3.2539               0.8402               0.8402    3.5980 
Working group 1  0.4651               3.4011               0.4651              3.7221 
Working group 2  0.3169               0.3169               3.4350              3.5471 
 
 

 
 
to the category chosen in 1. The optimal solutions are X

*I
, i = 1,…, k. The optimal values of the objective functions are 

noted to be fi
*
, i = 1, …, k and are presented in Table 8. 

Step 3: The director evaluates the value of the other k – 1 objective function at the k optimal solutions and constructs 
the k x k table of the objective values. From Table 9, the director knows the best and the worst values for each objective 
function. These values are noted to be bi min, bi max, i = I, …, k. The approach proceeds by determining the reduced 
solvability set D′ = {{D}| bi min, < bi < bi max, i = I, …, k} where D is the set of parameters for which the problem is solvable. 

The reduced solvability set is 
3.5980 ≤ b1 ≤ 5.9405, 
3.7221 ≤ b2 ≤ 10.9465, 
3.5471 ≤ b3 ≤ 15.8771 
Step 4: The director presents the reduced solvability set D′ to the working groups to seek their preferences for each 

objective function. These values are set according to the working groups’ knowledge and experience. For class 1S, each 
working group determines the degrees of desirability t

+
i1, t

+
i2, t

+
i3, t

+
i4, t

+
i5.  Table 10 shows the degrees of desirability fixed 

by (Tappeta et al. 2000). These degrees of desirability are used to be able to compare the results. 
It is obvious that the degrees of desirability t

+
i2 for the objective functions f1 and f2 could never be reached, since they 

are not included in the reduced solvability set: the minimal value for the objective function f1 is 3.5980 and for f2 is 
3.7221. This example shows that the degrees of desirability should not be given blindly to prevent the choice of 
scenarios which are not feasible. Table 11 shows more realistic degrees of desirability. These degrees of desirability are 
obtained by dividing the solvability set 3.5980 ≤ b1 ≤ 5.9405, 3.7221 ≤ b2 ≤ 10.9465 and 3.5471 ≤ b3 ≤ 15.8771 according 
to this scenario: we suppose that the worst value is undesirable (t

+
i4 = biMax) and we calculate (bi max – bi min)/4 = vi to find 

the following degrees of desirability: t
+

i1 = t
+

i2 – vi, t
+

i2 = t
+

i3 - vi, t
+

i3 = t
+

i4 = vi, t
+

i4 = biMax, and t
+

i5 = t
+

i4 + vi. 
We assume that preferences are uniformly distributed across the solvability set but it is not necessarily always the 

case. 
Step 5: Set solution j – 1. The working groups select the target values bi for each objective function. It is obvious that 

 
Table 9. Objective function values table for test Problem 1  

              x1       x2       x3       f1        f2        f3 
X

*1
  3.2539               0.8402                0.8402   3.5980  10.9465  15.8166 

X
*2

  0.4651               3.4011               0.4651     5.9405   3.7221  15.8771 
X

*3
 0.3169               0.3169                3.4350   5.8929  10.8797  3.5471 

 
 

 
 

Table 10. The degrees of desirability specified by Tappeta et al. (2000) 
  

Criteria Class   HD              D  T  U  HU 
t
+

i1                t
+

i2               t
+

i3  t
+

i4  t
+

i5 

f1     1S   3.0  4.25  6.0  7.5  9.0 
f2     1S   3.7  7.0  9.25  11.8  12.5 
f3     1S   6.0  12.0  15.0  18.0  20.0 
HD: (highly desirable ≤ t

+
i1), D: (t

+
i1 < desirable ≤ t

+
i2), T: (t

+
i2 < tolerable ≤ t

+
i3), ID:  

 
(t

+
i3 < undesirable ≤ t

+
i4), IA: (t

+
i4 < highly undesirable ≤ t

+
i5)  

 
Table 11. The working group’s preferences for test Problem 1  

Criteria  Class   I      D      T    ID   IA 
t
+

i1    t
+

i2       t
+

i3       t
+

i4   t
+

i5 

f1  1S      4.1836     4.7693  5.3549   5.9405      6.5261 
f2   1S      5.5282     7.3343  9.1404              10.9465    12.7526 
f3   1S      6.6296     9.7121  12.7946  15.8771    18.9596 
HD: (highly desirable ≤ t

+
i1), D: (t

+
i1 < desirable ≤ t

+
i2), T: (t

+
i3 < tolerable ≤ t

+
i3), ID: (t

+
i3 < undesirable ≤ t

+
i4), 

IA: (t
+

i4 < highly undesirable ≤ t
+

i5).  
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Each working group wants to obtain the better value for their objective functions. So they will choose target values in 
the highly desirable zone. We assume that the approach starts with the target values corresponding to t

+
i1: 

Working group 1 sets the target value of b1 at 4.1836 (highly desirable), 
Working group 2 sets the target value of b2 at 5.5282 (highly desirable), 
Working group 3 sets the target value of b3 at 6.6296 (highly desirable). 
Step 6: With the target values supplied by the working groups, the director uses the algorithm proposed by (Dauer 

and Krueger et al., 1997) given in Appendix A to solve the multi-objective goal programming problem and to obtain a first 
Pareto optimal solution X1: 

X1 = (2.8568, 1.8775, 0.5598), 
f1 = 4.1836 (the value of f1 is in the highly desirable zone), 
f2 = 9.4178 (the value of f2 is in the undesirable zone), 
f3 = 16.7115 (the value of f3 is in the highly undesirable zone). 
Step 7: If the working groups are satisfied with this solution, stop and go to Step 13, if not, go to Step 8. For this case, 

we assume that the working groups 1 and 2 are not satisfied since the values of their objective functions f2 and f3 are in 
the undesirable and highly undesirable zones, respectively, and want to generate another solution. Go to Step 8. Steps 
8, 9, and 10 are necessary to ensure that the work groups will choose target values leading to other Pareto-optimal 
solution. 

Step 8: The director formulates the KKT conditions of the problem and determines the values of the Kuhn Tucker 
multipliers associated with the goal constraints ur, r = 1, …, k + m, 

u2 =1 .2771 × 10
5
, u3 = 5.6776 × 

104
, u4 =1 . ……………………………….(9) 

Step 9: According to the values ur, and by using the algorithm of Osman [20] given in Appendix B, the director 
determines the stability set G(X1) 

Given u2 > 0 and g2 = 4.1836 then b1 = 4.1836, 
Given u3 > 0 and g3 = 5.5282 then b2 = 5.5282, 
Given u4 > 0 and g4 = 6.6296 then u3 = 6.6296. 
Step 10: The director uses the sets subtraction algorithm proposed by Abdel Haleem et al., (1991) given in Appendix 

C to obtain the new reduced solvability set {D′ − U
j
p=1 G(Xp)} given in Table 12. 

Step 11: If no values can be selected in {D′ − U
j
p=1 G(Xp)}  stop and go to Step 13, otherwise go to Step 12. In this 

case, other values can be chosen in Table 10 so go to Step 12. 

Step 12: Set J = J + 1. The working groups select other target values for their objective function in b
j
  {D′ − U

j
p=1 

G(Xp)} and go to Step 6. The solutions obtained are presented in Table 13. 
The third Pareto-optimal solution seems to be the best one because all the objective values match the target values 

according to Table 10. This solution can be considered satisfactory and a good compromise for all the working groups. 
Step 13: The director presents the Pareto-optimal solutions obtained to the working groups to select the best one for 

everyone (stop). If other solutions are necessary go to Step 12. Although the solutions obtained in the six iterations are 
Pareto optimal, the best Pareto-optimal solutions according to the working group’s preferences (desirability) are 
solutions 3 and 4. These solutions can be retained for implementation.  

Finally, it is also interesting to know if the solutions (Pareto points) obtained by this approach are close to certain 
targeted aspiration points. To do this, we compare the obtained results with the Pareto-optimal results obtained by 
 

Table 12. The reduced solvability set for test Problem 1 
 

Set No.     b1 min  b1 max    b2 min  b2 max              b3 min         b3 max 
      1      3.5980  4.1836    3.7221  10.9465  3.5471        15.8771 
      2      4.1836  5.9405    3.7221  10.9465  3.5471        15.8771 
      3      4.1836  4.1836    3.7221  5.5282              3.5471        15.8771 
      4      4.1836  4.1836    5.5282  10.9465  3.5471        15.8771 
      5      4.1836  4.1836    5.5282  5.5282              3.5471         6.6296 
      6      4.1836  4.1836    5.5282  5.5282   6.6296        15.8771 
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Table 13. Pareto-optimal solutions generated by the approach 
  

Solution j  Target values bi   Objective function values fi 
b1 = 4.1836       (highly desirable)   f1 = 4.1836 (highly desirable) 
b2 = 5.5282       (highly desirable)   f2 = 9.4178 (undesirable) 
b3 = 6.6296        (highly desirable)            f3 =1 6.7115 (highly undesirable) 
b1 = 4.5             (desirable)     f1 = 4.5 (desirable) 
b2 =8                 (tolerable)     f2 = 8.6799 (tolerable) 
b3 =13               (undesirable)          f3 =1 6.8579 (highly undesirable) 
b1 = 5.2             (tolerable)     f1 = 5.2 (tolerable) 
b2 =9                 (tolerable)      f2 =9 (tolerable) 
b3 =14                (undesirable)      f3 =1 4.8087 (undesirable) 
b1 = 5.3              (tolerable)      f1 = 5.3 (tolerable) 
b2 = 9.1              (tolerable)      f2 = 9.1 (tolerable) 
b3 =12.5             (tolerable)                 f3 =1 4.4381 (undesirable) 
b1 = 5.9              (undesirable)              f1 = 5.9 (undesirable) 
b2 = 8.9              (tolerable)       f2 = 8.9 (tolerable) 
b3 =12.6              (tolerable)                 f3 =1 3.0147 (undesirable) 
b1 =5                   (tolerable)                  f1 =5 (tolerable) 
b2 =10                 (undesirable)             f2 =1 0 (undesirable) 
b3 =12                 (tolerable)                 f3 =1 3.9899 (undesirable) 
 

 
 
Tappeta et al. (2000) at specific aspiration points. The comparison is presented in Table 14. 
For a minimization problem, we want to find a better (smaller) solution than or equal the aspiration values. The symbol 
(+) indicates that the solution obtained by our approach is worse (bigger) than the aspiration values, the symbol (=) 
indicates that the solution obtained is the same (equal) as the aspiration values, and the symbol (−) indicates that the 
solution obtained is better (smaller) than the aspiration values. The solutions obtained with our algorithm are considered 
better than or equal to those found by Tappeta et al. (Tappeta et al., 2000) if the number of symbols (−) and (=) exceeds 
the number of symbols (+). For the first solution, the number of symbols (−) and (=) is 2 for the IMOP algorithm and the 
number of symbols (−) and (=) is 1 for Tappet et al. (Tappeta et al., 2000). These results are very encouraging because 
they demonstrate that our approach can find solutions closer to the working Journal of Industrial Engineering 
 

Table 14. Aspiration points and Pareto data from (Tappeta et al., 2000)  
Aspiration values (target values)  Pareto points (Tappeta et al., 2000) Pareto points IMOP approach 
 1                2         3                   1         2              3            1         2                3 
7.483         6.788     11.285             6.956 (−)        7.437 (+)     11.496 (+)          6.9722 (−)   6.7880 (=)   12.3239 (+) 
5.400         6.788     16.927             5.413 (+)         6.916 (+)    16.218 (−)          4.4679 (−)   5.1878 (−)   16.3795 (−) 
6.016         10.183    11.285            3.994 (−)         10.095 (−)   16.130 (+)         6.0002 (−)    9.9646 (−)   10.7528 (−) 
3.933         10.183    16.927            4.708 (+)          8.689 (−)    16.259 (−)         3.9235 (−)    10.0191(−)  16.4693 (−) 
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Figure 2. Two-bar truss example 

 

group’s requirements (aspiration values) than algorithms available in the literature. 
Test Problem 2. The second problem is the design of a two-bar structure that is subjected to a force, F, at a point that 
vertically deflects by an amount, d. This optimization problem involves the minimization of the mass, m, the normal 
stress, s, and the vertical deflection, d, of a two-bar truss. The design variables are the diameter of the member, x1 = a, 
and the height, x2 = h. Normal stress must be less than the buckling stress, as a constraint. A graphical representation of  
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the truss is shown in Figure 2 (Messac et al., 2002). The specific parameter values are as follows: F = 150kN, t = 

2.5mm, structure width w = 750mm, mass density  = 7.8 x 10
−3

 g/mm
3
, and elastic modulus E = 210000 N.mm

2
. 

The problem’s formulation is as follows: 
 

Minimize f1 (X) = m = 2tx1     w
2
 + x2

2
, 

 
f2 (X) =s =    F       w

2
 + x2

2 
, 

           2tx1 x2 

f3 (X) = d =                      F (w
2
 + x2

2
)
3/2 

                2Etx1 x2
2 

 

subject to g1 (X) =    F       w
2
 + x2

2 
–  1 

2
 E  t

2
 + x1

2
 < 0, 

              2tx1 x2     8     w
2
 + x2

2 

1 ≤ x1 ≤ 100, 
10 ≤ x2 ≤ 1000……………………………………………………………………..(10) 
 

 
 

Table 15. Optimal values for the objective function of test Problem 2  
 X

*i
       x1       x2         fi

* 

Working group 1    39.2944  335.6810      3956 
Working group 2      100              1000                  119.3662 
Working group 3               100              1000                   0.8881 
 
 

 
 

Table 16. Objective function values table for test Problem 2  
         x1     x2           f1    f2    f3 
         X

*1
    39.2944        335.6810  3956   5956 

         X
*2

     100        1000  15315            119.3662  0.8881 
         X

*3
     100        1000  15315            119.3662  0.8881 

 
 

 
For this example, we assume that each objective function needs specific competencies so one objective function is 

assigned to a working group. The procedure proceeds with a director and three working groups. 
Step 1: Each working group classifies its objective function: 
Working group 1 classifies f1 (X) in class 1S, 
Working group 2 classifies f2 (X) in class 1S, 
Working group 3 classifies f3 (X) in class 1S. 
Step 2: Each working group solves its single optimization problem according to the category chosen in 1. The optimal 

solutions are X
*i
, i = 1,…, 3. The optimal values of the objective functions are noted to be fi

*
, i = 1, …, 3 and are 

presented in Table 15. 
Step 3: The director evaluates the two other objective functions at the three optimal solutions and constructs the 3 ×3 

table of the objective functions’ values. From Table 16, the director knows the best and the worst values for each 
objective function. These values are noted to be bi min, bi max, i = 1, …, 3. The approach proceeds by determining the 
reduced solvability set denoted by D′ where D′ = {D | bi min ≤ bi ≤ bi max, i = 1, …, 3} and D is the set of parameters for 
which the problem is solvable. 

The reduced solvability set is  
3956 ≤ b1 ≤ 15315, 
119.3662 ≤ b2 ≤ 595, 
0.8881 ≤ b3 ≤ 6. 

 
Table 17. Working group’s preferences for test Problem 2 

  
Function    Class  HD  D  T  U  HU 
   t

+
i1 t

+
i2 t

+
i3 t

+
i4 t

+
i5 

 f1       1S              4450  4550  4650  4750  4850 
 f2       1S              370  390  400  450   500 
 f3       1S               2  2.5     3   3.5     4 
 
 

 
HD: (highly desirable ≤ t

+
i1), D: (t

+
i1 < desirable ≤ t

+
i2), T: (t

+
i2 < tolerable ≤ t

+
i3), ID: (t

+
i3 < undesirable ≤ t

+
i4), IA: (t

+
i4 < 

highly undesirable ≤ t
+

i5). 
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Step 4: The director presents the reduced solvability set D′ to the working groups to seek their preferences for each 
objective function. These values are set according to the working groups’ knowledge and experience. For class 1S, each 
working group determine t

+
i1, t

+
i2, t

+
i3, t

+
i4, t

+
i5. Table 17 shows the degrees of desirability determined by Messac and  

Ismail- Yahaya [21]. These degrees of desirability are used to be able to compare the results. These degrees of 
desirability are realistic because they are inside the reduced solvability set determined in Step 3. 
Step 5: Set solution j = 1. Each working group selects the target values b1 for its objective function. We assume that the 
working groups will not make a compromise, and they will choose target values in the highly desirable zone. The 
approach starts with the target value corresponding to t

+
i1: 

Working group 1 sets target value b1 at 4450 (highly desirable), 
Working group 2 sets target value b2 at 370 (highly desirable), 
Working group 3 sets target value b3 at 2 (highly desirable). 
Step 6: With the target values supplied by the working groups, the director uses the algorithm proposed by Dauer and 
Krueger [19] given in Appendix A to solve the multi-objective goal programming problem and to obtain a first Pareto 
optimal solution X1: 
X1 = (37.83925 99.0083), 
f1 = 445 0 (the value of f1 is in the highly desirable zone), 
f2 = 4 04.3889 (the value of f2 is in the undesirable zone), 
f3 =2 .9618 (the value of f3 is in the tolerable zone). 
Step 7: If the working groups are satisfied with this solution, stop and go to Step 13, if not, go to Step 8. For this 
problem, we assume that working group 2 is not satisfied since the value of its objective function is in the undesirable 
zone and wants to generate another solution. Go to Step 8. Steps 8, 9, and 10 are necessary to ensure that the working 
groups will choose target values leading to other Pareto-optimal solution. 
 

Table 18. The reduced solvability set for test Problem 2  
Set no:   b1 min   b1 max    b2 min  b2 max   b3 min   b3 max 
     1     3956              4450              119   595     1       6 
     2     4450              15315              119   370         1       6 
     3     4450              15315               370   595     1      2 

 
 

Table 19. Pareto-optimal solutions generated for Problem test 2  
Solution   Target Values bi    Objective Function Values fi  
b1 =445 0                      (highly desirable)  f1 =445 0 (highly desirable) 
b2 =3 70                        (highly desirable)  f2 =4 04.3889 (undesirable) 
b3 =2                             (highly desirable)            f3 =2 .9618 (tolerable) 
b1 =4 600                       (tolerable)    f1 =4 600 (tolerable) 
b2 =3 95                         (tolerable)   f2 =3 86.1490 (desirable) 
b3 =1 .8                          (highly desirable)  f3 =2 .7917 (tolerable) 
b1 =45 65                        (tolerable)    f1 =45 65 (tolerable) 
b2 =3 69                          (highly desirable)   f2 =3 90.0621 (tolerable) 
b3 =2 .8                           (tolerable)    f3 =2 .8269 (tolerable) 
 

 
 
Step 8: The director formulates the KKT conditions for the problem and determines the values of the Kuhn Tucker 
multipliers associated with the goal constraints ur, r = 1,…, k + m  
u2 = 0, u3 = 0, u4 = 0.  ………………………………………….(11) 
Step 9: According to the values ur, and by using the algorithm of (Osman, 1979) given in Appendix B, the director 
determines the stability set G(X): 
Given u2 = 0 and g2 = 4450 then b1 ≥ 4450, 
Given u3 = 0 and g3 = 370 then b2 ≥ 370, 
Given u4 = 0 and g4 = 2 then b3 ≥ 2. 
Step 10: The director uses the sets subtraction algorithm proposed by (Abdel Haleem et al., 1991) given in Appendix C 
to obtain the reduced solvability set {D′ − U

j
p=1 G(Xp)} given in Table 18. 

 
Table 20. Results’ comparison, Ismail-Yahaya et al., 2002  

Two-bar structure  Results IMOP approach  Results of Messac and Characteristics  
Diameter (x1)                3.80 cm      3.80 cm 
Height (x2)    64.2 cm      63.26 cm 
Mass (f1)    4.600 kg (Tolerable)                          4.565 kg (Tolerable) 
Normal stress (f2)   386 N (desirable)        390 N (tolerable) 
Vertical deflection (f3)             2.7917 (tolerable)                  2.826 (tolerable) 
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Step 11: If no target values can be chosen in {D′ − U

j
p=1 G(Xp)} stop and go to Step 13, otherwise go to Step 12. In this 

case, other values can be chosen in Table 18 so go to Step 12. 

Step 12: Set j = j + 1. The working groups select other target values for the goal vector b
j
  {D′ − U

j
p=1 G(Xp)} and go 

to Step 6. Some solution results are presented in Table 19. 
The second Pareto-optimal solution seems to be the best one because all the objective values are in the tolerable or 

desirable zone according to Table 17. This solution can be considered satisfactory and a good compromise for all the 
working groups. 

Step 13: The director presents the Pareto-optimal solutions to the working groups to select the best solution for 
everyone (stop). If other solutions are necessary go to Step 12. 

Table 20 shows the results obtained for the characteristics of the two-bar structure. For the normal stress function, the 
result obtained with the IMOP approach is in the desirable zone while the solution obtained by (Messac  et al., 2002) is 
in the tolerable zone according Table 17. This means that working group 2 is better satisfied with our solution. For the 
other functions, both results are in the same zone according Table 17. The difference between the results is that our 
solution is obtained by an interactive and collaborative process between the DM and the working groups and it is 
possible to generate several design scenarios (Pareto-optimal solutions) without changing the degrees of desirability. 
(Messac  et al., 2002) provide information for only one design scenario (i.e., a single Pareto solution). If we want another 
solution we have to change the degrees of desirability. This IMOP algorithm has permitted to convergence to a solution 
that is acceptable for all the working groups. As shown, this procedure offers more flexibility for the director and his/her 
working groups. 
 
 
CONCLUSION 
 
The IMOP approach developed in this paper is an extension of the interactive nonlinear goal programming algorithm of 
(Abdel Haleem et al., 1991). The first contribution of the IMOP algorithm is the ability to define a reduced set of target 
values that can be divided into degrees of desirability to capture the working groups’ preferences. This is an important 
contribution because it is a challenging issue in multi-objective optimization. It also subtracts the stability set from the 
reduced set of target values at each iteration, thus ensuring a different Pareto-optimal solution each time. Also, the 
distribution of the objective functions among working groups is beneficial to consider disciplinary knowledge and 
experience in determining the degrees of desirability. The IMOP approach generates as many new Pareto optimal 
solutions (design alternatives) as needed. These solutions meet as much as possible the requirements of the working 
groups. Also, the application of the decision that rules for choosing the target values permits the convergence to Pareto-
optimal solutions in the same desirability zone (or better) for all the objectives. 

The approach has been successfully applied to two problems. It is true that these problems are simple but they make 
the application of the IMOP approach clear. In this paper, the multi-objective optimization process is centralized. Future 
work is also planned to use the IMOP algorithm in the case where the multi-objective optimization process is not under 
the control of the director but distributed to the working groups. We will be interesting by multidisciplinary optimization. 
Multidisciplinary optimization is a methodology used for designing complex systems that must satisfy many constraints 
and that must be carried out in a decentralized environment. Multidisciplinary optimization assumes a form of 
collaboration between the working groups because the decision variables are under the control of several working 
groups. The multidisciplinary optimization approaches are: 

Concurrent subspace optimization (Sobieszczanski-Sobieski et al., 1997), (Kroo, 2004) Bilevel integrated system 
synthesis (Kroo, 2004), (Sobieszczanski-Sobieski et al., 2002) Collaborative optimization (Sobieszczanski-Sobieski et 
al., 1997), (Kroo, 2004), (Braun, 1996) and Analytical Target Cascading method (Min, 2003). We are working to combine 
the IMOP algorithm with one of these optimization approaches. 
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APPENDICES 
 
A. Algorithm of (Dauer et al., 1977) 
We consider the classical nonlinear goal programming problem with k goals (objective functions), subject o a set of 
constraints {M): 
(NLGP):  f1 (X) ≤ b1 
f2 (X) ≤ b2 
fk (X) ≤ bk 

Subject to M = {X  R
n 
| gr (X) < 0, r = 1, …, m, X > 0}  ………………………(A.1) 

where X is the vector of decision variables {x1, x2, …, xn} and bi, i = 1, …, k  represent aspiration levels for objectives 
fi(X), i = 1, …, k. The goals are arranged according to their priority levels, that is, if i < j then goal i, fi (X) < bi has a higher 
priority level than goal j, fj (X) < bj. It is well known that the fundamental premise of goal programming is that goal i is 
sought to attain without regard to the attainability of the goals with lower priority level j. This idea has been used by 
Dauer and Krueger to develop an algorithm for solving linear, nonlinear, and integer goal programming problems. The 
algorithm solves k singles objective function problems successively. The first and last problems are as follows: 
Solving the attainment problem for goal 1, P1 is: 
P1:  Minimize d1 
Subject to f1 (X) − d1 ≤ b1 
gr (X) ≤ 0,  r = 1, …, m  
d1 ≥ 0, X > 0,…………………………………………………………………..(A.2) 
where d1 is the positive deviation for objective f1(X) from its goal b1. The solution of this problem is d1

*
, which is the over 

attainment of goal 1. 
The last attainment problem for goal k, Pk is 
Pk:  Minimize dk 

Subject to  fi (X) – di < bi,  1 < i < k  
  d1 = d1

*
 1 < i < k – 1  

gr (X) ≤ 0, r = 1, …, m,   
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dk > 0, X > 0.  ………………………………………………………………..(A.3) 
By letting d1 = xn+k, i = 1, …, k the last attainment problem can be written in the form 
P′(G):  Minimize xn+k 
Subject to gr (X) ≤ br, r = 1, …, m  
  xa = xa

*
, n + 1 < a < n + k – 1  

  xn+k > 0, xi > 0, i = 1, …, n……………………………………….. (A.4) 

where  X  R
n+k

 and di
*
, 1 < i < k – 1 is replaced by xa

*
, n + 1 < d < n + k – 1. The solution of this problem denoted by X = 

(x1, x2, …, xn+k) is the optimal solution for the NLGP problem under consideration. Problem P′(G) can be considered as a 
parametric programming problem having parameters br in the RHS of the constraints and can be written in the form 
P (G):  Minimize f (X) ≡ xn+k 

Subject to M (b) = {X  R
n+k

 | gr (X) < br, r = 1, …, k + m, X > 0}, …………(A.5) 
where br is any arbitrary real number, and xa

*
, n + 1 < a < n + k = 1 have been directly substituted in the inequality 

constraints of P′(G). The solution of problem P(G) is thus the same as the solution of the P′(G) and NLGP, and the 
stability sets of problem P(G) can be calculated. 
B. The Determination of the Stability Set 
Osman (1977) presented the following algorithm for the determination of the stability set of the first kind: 

(1) Select an arbitrary b  D  and solve P(G) to obtain X and formulate the K.K.T. conditions. 
(2) Determine the values of ur, using any available algorithm. 
(3) According to the values of ur, the stability set of the first kind G(X) can be determined as follows: 
(a) For ur = 0, r = 1, …, k + m, G1 (X) = {b | br ≥ gr (X)}  
(b) For ur > 0, r = 1, …, k + m, G1 (X) = {b | br ≥ gr (X)} 

(c) For ur = 0, r  J  {1, …, k + m}, ur > 0, r  J, G1 (X) = {b | br ≥ gr (X), r  J, br = gr (X), r  J}, G3 (X) =  UpossibleJ 
GJ (X). 
C. The Sets Subtraction Algorithm (Abdel Haleem, 1991) 
Let bi, i = 1, …, k be the elements of the universal set V in the k dimensional space. V is considered a universal set from 
which some other sets Si, i = 1, …, 1 are subtracted. 
Let Vs = { U

I
i = 1 Si, i = 1, …, I) be the subtracted set. The elements contained in the universal set and the subtracted sets 

are used to determine the lower and the upper bounds for each set in each dimension. These values represent the input 
to the sets subtraction algorithm. Each set is represented as a record containing the lower and the upper bounds for 
each dimension as shown in Table 2. 
The function of the algorithm is to get the difference between the universal set and the subtracted set {V – Vs}. This 
difference is defined as those elements that are contained in the set V and not contained in Vs. The subtraction is done 
in steps. First, the algorithm gets the difference between V and Vs, where Vs = S1, thus getting {V – S1}. Then the set S2 
is subtracted from {V – S1}, thus getting {{V – S1}− S2} and Vs = U

2
i=1 Si, and so on. 

 


