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Abstract 

 

Time series models are applied with time series data of variables measured over time. The study 
focuses on examining the forecasting performance of the autoregressive Moving Average (ARMA). 
The study investigates the statistical properties of the series, the residuals of the ARIMA model. The 
model attempts to identify the trend and statistical properties. The question studied was whether 
information from the proposed model gave a better trade forecast. The "forecasting" situation 
examined really involved added useful information. The analysis of the data demonstrates that the 
model applied here may be useful to understand the properties of the time series model of Saudi-US 
foreign trade statistics.                                                                                                                                       

 
      Keywords: ARIMA Models, Autocorrelation, Box-Jenkins Models, Correlograms, Identification. 

 
introduction 

 
Time series analysis accounts for the fact that data points taken over time may have an internal structure (such as 
autocorrelation, trend or seasonal variation) that should be account for. Time series models are used to obtain an 
understanding of the underlying forces and structure that produced the observed data as well as fitting a model and 
proceed to forecast. The purpose of this article is to provide an analysis of time series model for foreign trade statistics. 
In the following sections, the techniques those are useful for analyzing and identifying patterns in time series data will be 
introduced. As in most other analysis, in time series analysis it is assumed that the data consist of a certain pattern 
(usually a set of identifiable components and random noise (error), which makes the pattern difficult to identify. Some 
recommendations based on the results obtainable from foreign trade data are to be introduced. Early detailed discussion 
of the methods described in this topic can be found in Box and Jenkins (1976), Box et al.(1970), Brockwell and 
Davis(1996). Other related issues on time series models ,such as multivariate and univariate time series analysis 
,pooling and residual analysis were found in Journal of Time Series Analysis (see Ginger et al. (2007), Jean-Marc et al. 
(2007), Massimiliano (2007), Elena (2007). Recently Robert et al. (2011) has covered time series analysis and its 
applications presents a balanced and comprehensive treatment of both time and frequency domain methods with 
accompanying theory. In addition to coverage of classical methods of time series regression, ARIMA (autoregressive 
integrated moving averages) models, spectral analysis and state-space models. In his page, Robert (2014) has 
presented linear regression and time series forecasting models with focus on ARIMA models. Testing for trends in      
ARIMA models was also found in Rob (2014).                                                                                                                       

                                                                                                                     
The Model                                                          

 
The original Box-Jenkins modeling procedure involved an iterative process of model selection, parameter estimation and 
model checking. According to Rob J (2001), recent explanations of the process (e.g., Makridakis et al., 1998) often add 
a preliminary stage of data preparation and a final stage of model application or forecasting. Consider the   simple time 

series model, then each observation would be consisting of a constant (b) and an error component (epsilon), that is:     
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Xt = b + t. 
When applied recursively to each successive observation in the series, each new smoothed value (forecast) is 
computed as the weighted average of the current observation and the previous smoothed observation; the previous 
smoothed observation was computed in turn from the previous observed value and the smoothed value before the 
previous observation, and so on. The series equation can be expressed in the following form:                                            
                                                                                         

xt = + 1*x(t-1) + 2*x(t-2) + 3*x(t-3) + ... +                           
Where:               

 

      is a constant (intercept), and 

 1   , 2   , 3   are the autoregressive model parameters.          

 and .  is a random error or random shock 
An autoregressive process will only be stable if the parameters are within a certain range; for example, if there is only 

one autoregressive parameter then is must fall within the interval of -1 < < 1. Otherwise, the series would not be 
stationery. However, each element in the series can also be affected by the past error (see Copyright StatSoft, Inc., 
1984-2003) that cannot be accounted for by the autoregressive component, that is:  

xt = µ + t - 1* (t-1) - 2* (t-2) - 3* (t-3) - ...                                                
 Where:  

 µ  is a constant, and:  1  ,  2 ,  3 are the moving average model parameters. 
  
In a multiple regression model, the variable of interest can be forecasted using a linear combination of predictors. In an 
autoregression model, we forecast the variable of interest using a linear combination of past values of the variable. The 
term autoregression indicates that it is a regression of the variable against itself. Thus an autoregressive model of 
order p can be written as: Rob and George (2014).                
                   yt=c+ϕ1yt−1+ϕ2yt−2+⋯+ϕpyt−p+et,                                                          

 
where c is a constant and et is white noise. This is like a multiple regression but with lagged values of yt as predictors. 
We refer to this as an AR(p) model.                           
Time series patterns can be described in terms of two components: trend and seasonality .The former represents a 
general systematic linear or nonlinear component that changes over time. If there is considerable error in the time series 
data, then the first step in the process of trend identification is smoothing. The most common technique is moving 
average smoothing which replaces each element of the series by either the simple or weighted average of n surrounding 
elements. A logarithmic, exponential, or polynomial function can be used to remove the nonlinearity to approximate the 
data by a linear function. Seasonal patterns of time series can be examined via correlograms which displays the 
autocorrelation function (ACF), that is, serial correlation coefficients (and their standard errors) for consecutive lags in a 
specified range of lags.                                                                                                            
Exponential smoothing and ARIMA models are the two most widely-used approaches to time series forecasting 
problem. While exponential smoothing models were based on a description of trend and seasonality in the data, ARIMA 
models aim to describe the autocorrelations in the data Rob and George(2014).  

 
Forecasting based on ARIMA models, commonly known as the Box–Jenkins approach, comprises following stages:         
                                                                                           
i.)  Model identification  ii.) Parameter estimation iii.) Diagnostic checking. These stages are repeated until a “suitable” 
model for the given data has been identified.  
The (Autoregressive Moving Average model, ARMA), introduced by Box and Jenkins (1976) includes autoregressive as 
well as moving average parameters, specifically, the three types of parameters in the model are: (p), (d), and (q). In the 
notation models are summarized as ARIMA (p, d, q); so, for example, a model described as (0, 1, 2) means that it 
contains 0 (zero) autoregressive (p) parameters and 2 moving average (q) parameters.                                                      
Given a time series of data Xt, the ARMA model consists of two parts, an autoregressive (AR) part and a moving 
average (MA) part. Following Elena Pesavento, (2007), the AR(p) model can be written as: 
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where are the parameters of the model, c is a constant and is an error term. Omitting the constant 
(c),the notation MA(q) refers to the moving average model of order q: 

 
 

Where the θ1, ..., θq are the parameters of the model and the εt, εt-1,... are again, the error terms.  
The notation ARIMA (p, q) refers to the model with p autoregressive terms and q moving average terms. This model 

contains the AR (p) and MA(q) models, 

 
 
The error terms εt are assumed to be independent identically-distributed random variables with zero mean: εt ~ N(0,σ

2
) 

where σ
2
 is the variance.  

Usually the series first needs to be differenced until it is stationary. In order to determine the necessary level of 
differencing, one should examine the plot of the data and autocorrelogram. Significant changes in level (strong upward 
or downward changes) usually require first order non seasonal (lag=1) differencing; strong changes of slope usually 
require second order non seasonal differencing. If the estimated autocorrelation coefficients decline slowly at longer 
lags, first order differencing is usually needed. 
At the stage of( identification) , we need to decide how many autoregressive (p) and moving average (q) parameters 
are necessary to yield an effective model of the process ,model  that fits the data.ARMA models can, after choosing p 
and q, be fitted by least squares regression to find the values of the parameters which minimize the error term. It is 
generally considered good practice to find the smallest values of p and q which provide an acceptable fit to the data. 
Elena Pesavento (2007). 
At the (estimation) step, the estimates of the parameters are used in the last stage (Forecasting) to calculate new 
values of the series and confidence intervals for those predicted values. The estimation process is performed on 
transformed (differenced) data; before the forecasts are generated, the series needs to be integrated (integration is the 
inverse of differencing) so that the forecasts are expressed in values compatible with the input data. This methodology is 
named as (ARIMA), Auto-Regressive Integrated Moving Average).  Robert et al. (2011) introduced autocorrelation and 
cross-correlation functions (ACFs and CCFs) as tools for clarifying relations that may occur within and between time 
series at various lags. In addition, they explained how to build linear models based on classical regression theory for 
exploiting the associations indicated by large values of the ACF or CCF. In statistics, the autocorrelation function (ACF) 
of a random process describes the correlation between the processes at different points in time. Let Xt   be the value of 

process at the time t. If Xt has mean µ and variance 𝝈𝟐then following Elena Pesavento (2007) the definition of the ACF 
is:                                                                       

 
 

Where E is the expected value operator and R, the correlation function, ranges between [1,-1], but for the second order 
stationary, the ACF can be obtained by:                              

 

 
 

Where k is the lag [t-s]                                                                                                                                   
However, for a discrete time series of length n with known mean and variance, the ACF can be estimated by:                   
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For any positive integer k < n                                                                                            
In time series analysis regression, Durbin-Watson test (D.W) can be used for detection of first order autocorrelation or 
Durbin’s H statistic when lagged dependent variable is used as explanatory variable Elena Pesavento (2007).                  
The major tools used in the identification phase, before the estimation step are plots of the series, correlograms of auto 

correlation (ACF), and partial autocorrelation (PACF). A correlogram is graph of the autocorrelation versus (the 
time lags). If cross-correlation is used, it is called a cross-correlogram. Elena Pesavento (2007).In the same graph one 
can draw upper and lower bounds for autocorrelation with significance level : 

 

With as the estimated autocorrelation in period .  
 

If the autocorrelation is higher (lower) than this upper (lower) bound, the null hypothesis of no autocorrelation is rejected 
at the confidence level . Thus, positive (negative) autocorrelation is given; t is the quantile of the t-distribution; SE is 
the standard error, which can be computed by the formula for MA (l) processes, thus:                                                         
                                                                            

bzw. for  
 

We can reject the null that there is no autocorrelation between periods that are close to each other.                                   
                                                                                           

 
DATA ANALYSIS 

 
Introduction 

 
Saudi oil production and investment policies have assumed important to the industrialized and the developing world, 
particularly to the United States  which  have been more clearly in1990, after the Gulf War (1991)  because it was the 
major oil-producing country and thereby has strong influence on international oil supplies and prices.  Saudi Arabia is 
second in the world to Canada in proven reserves of petroleum (24% of the proved total), ranks as the largest exporter 
of petroleum, and plays a leading role in OPEC. Saudi Arabia has an oil-based economy where the petroleum sector 
accounts for roughly 75% of budget revenues, 40% of GDP, and 90% of export earnings. Saudi oil reserves are the 
largest in the world, and Saudi Arabia is the world's leading oil producer and exporter. Oil accounts for more than 90% of 
the country's exports and nearly 75% of government revenues (see Country Analysis Briefs home page (2005), The 
World Fact Book (2006), Arab Countries, Special Arab Files, Saudi Arabia(2006).  (Source: Country Analysis Briefs 
home page (2005)). 

 
Model Results 

 
In this section, the data of foreign trade statistics of USA and Saudi Arabia, which include exports and imports in million 
dollars for the period (1985-2005), for Saudi Arabia, is the main supplier of oil to USA. In this section, techniques to 
identify trend components in the time series data will be of interest. If the time series data contain considerable error, 
then the first step in the process of trend identification is smoothing by using the moving average smoothing which 
replaces each element of the series by either the simple or weighted average of n surrounding elements.  
In this analysis of foreign trade data, a summary of three models for exports (Exp) and imports (Imp) is given in 
table(1),where ANOVA Summary for the same models is shown in table (2) and the coefficients are presented in 
table(3). Significant tests are also summarized for the models (2) and (3). Time series data have been adequately 
approximated by a linear function; since there is a clear monotonous nonlinear component, thus data first need to be     
transformed to remove the nonlinearity. Logarithmic, exponential, and logistic function have been used to satisfy the        
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required analysis. The curve fit for each of exports and imports is shown in different transformations, in table (4) which 
shows significant F at 0.05, table (6) where insignificant F is seen and figures (1),(2) successively. A first step in 
analyzing the underlying model is to examine the autocorrelations (ACF) and partial autocorrelations. Seasonal patterns 
of time series can be examined via correlograms. The correlogram (autocorrelogram) displays graphically and 
numerically the autocorrelation function (ACF), that is, serial correlation coefficients (and their standard errors) for 
consecutive lags in a specified range of lags (1 through 20). While examining correlograms one should keep in mind that 
autocorrelations for consecutive lags are formally dependent. While examining correlograms we keep in mind that 
autocorrelations for consecutive lags are formally dependent. For instance, If the first element is closely related to the 
second, and the second to the third, then the first element must also be somewhat related to the third one, etc. If so, 
then the pattern of serial dependencies can change considerably after removing the first order auto correlation (i.e., after 
differencing the series with a lag of 1). The numerical autocorrelation function for exports was displayed in figure (4).   
The serial correlation coefficients and their standard errors for consecutive lags were taken. Ranges of two standard 
errors for each lag are marked in correlograms. It should be noted that only very strong and highly significant 
autocorrelations are to be interested in. A first step in diagnostic checking of fitted models is to analyze the residuals 
from the fit for any signs of non– randomness. The analysis contains a plot of the residuals, the autocorrelation of the 
residuals and the p-values of the Ljung–Box statistic. The test examines the Null of independently distributed residuals. 
If the residuals are not, then they come from a miss–specified model. Partial autocorrelations is a useful method to 
examine serial dependencies is to examine the partial autocorrelation function (PACF) - an extension of autocorrelation, 
where the dependence on the intermediate elements (those within the lag) is removed. Partial autocorrelation is similar 
to autocorrelation, except that when calculating it, the (auto) correlations with all the elements within the lag are partial 
out (see figure (4-5)). If a lag of 1 is specified, then the partial autocorrelation is equivalent to auto correlation.  The 
autocorrelation plot can provide answers to whether or not  the data are random, an observation related to an adjacent 
observation, the observed time series autoregressive, what is the appropriate model for the observed time series, and if 
the underlying model is valid and sufficient. To check for randomness in the data set, autocorrelation plots are used (see 
figure(6). This randomness is ascertained by computing autocorrelations for data values at varying time lags .If random, 
such autocorrelations should be near zero for any and all the lag separations .If non –random, then one or more of the 
autocorrelations will be significantly non-zero. Autocorrelations should be near- zero for randomness, otherwise the 
randomness assumption fails. The autocorrelation plot shows that the time series is not random, but rather has a high 
degree of autocorrelation between adjacent and near-adjacent observations. Autocorrelations and partial 
autocorrelations for exports and imports are displayed through figures (4-7) to (4-10) and 20 first lags are computed with 
two standard errors. Serial dependency for a particular number of lag can be removed by differencing (converting) the 
series and make the series stationary which is necessary for ARIMA and other techniques. For autoregressive process 
time series may consist of elements that are serially dependent in the sense that one can estimate a coefficient or a set 
of coefficients that describe consecutive elements of the series from specific, time-lagged (previous) elements. An 
autoregressive process will only be stable if the parameters are within a certain range; for example, if there is only one 

autoregressive parameter then is must fall within the interval of -1 < < 1. Otherwise, past effects would accumulate 
and the values of successive xt' s would move towards infinity, that is, the series would not be stationary. If there is more 
than one autoregressive parameter, similar (general) restrictions on the parameter values can be defined. 
Autoregressive as well as moving average parameters, and explicitly include differencing in the formulation of the model. 
Specifically, the three types of parameters in the model are: the autoregressive parameters (p), the number of 
differencing passes (d), and moving average parameters (q) were computed for the series after it was differenced once 
as seen in (Figure 4-11). At the estimation step, the parameters are estimated using function minimization procedures; 
so that the sum of squared residuals is minimized. The estimates of the parameters are used in the last stage 
(Forecasting) to calculate new values of the series (beyond those included in the input data set) and confidence intervals 
for those predicted values. The estimation process is performed on transformed (differenced) data; before the forecasts 
are generated, the series needs to be integrated (integration is the inverse of differencing) so that the forecasts are 
expressed in values compatible with the input data. This automatic integration feature is represented by the letter I in the 
name of the methodology (ARIMA = Auto-Regressive Integrated Moving Average). Approximate t values are reported, 
computed from the parameter standard errors to evaluate the model. If not significant, the respective parameter can in 
most cases be dropped from the model without affecting substantially the overall fit of the model. The major concern 
here is that the residuals are systematically distributed across the series (e.g., they could be negative in the first part of 
the series and approach zero in the second part) or that they contain some serial dependency which may suggest that 
the ARIMA model is inadequate. The analysis of ARIMA residuals constitutes an important test of the model. The     
estimation procedure assumes that the residual are not (auto-) correlated and that they are normally distributed.               
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Table 1. Models summary for Foreign Trade Data 
 

model R R square R square adjusted Std. Error of the Estimate 

Mod (1): 
Predictors:(Constant),imp 

0.139 0.019 -0.032 1881.6610 

Mod(2): 
Predictors,(Constant),yr 

0.445 0.198 0.155 1702.0773 

Mod(3): 
Predictors,(Constant),yr 

0.826 0.683 0.666 3454.6957 

 
Table 2. ANOVA for Foreign Trade 

 

Model Sum of squares Df. Mean square F Sig 

Model(1): 
Dependent Variable: Exp 

 
 

1334088 
67272315 
68606402 

 
 

1 
19 
20 

 
 

1334087.562 
3540648.141 

 
 
0.377 

 
0.547 

Regression 
Residual 
Total 
Model(2): 
Predictors(Constant),yr 
Dependent Variable: exp 

 
 
 

13562126 
55044276 
68606402 

 
 
 

1 
19 
20 

 
 
 

13562125.94 
2897067.174 

 
 
 
4.681 

 
0.043 

Regression 
Residual 
Total 
Model(3): 
Predictors(Constant),yr 
Dependent Variable: imp 

4.87E+08 
2.27E+08 
7.14E+08 

1 
19 
20 

487452983.4 
11934922.34 

40.843 0.000 

 
Table 3. Coefficients for Model s of Foreign Trade Statistics 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                Table 4. Curve fit for exports  
 

 Upper   Dependent  Mth   Rsq    d.f.     F  Sig f  bound      b0      b1 
 EXPORTS  LIN       .198    19     4.68  .043        -258904  132    .715 
 EXPORTS  LOG      .198    19    4.70  .043        -2.E+06   265    207 
 EXPORTS  EXP       .257    19    6.56  .019        2.0E-19  .025    9 
 EXPORTS  LGS       .257    19    6.56  .019   .    4.9E+18   .                      
                                                                               

      
                                               Table 5. Curve fit for Imports   

 

 
 
 
 
 
 

 
 

Model Unstandardized coefficients 
Standardized  Coefficients 

t Sig 

B Std.Error Beta  
 
6.427 

 
 
0.000 
0.547 

Model(1):Dependent 
variable exp 

 
5410.1830 
4.322E-02 

 
841.752 
0.070 

 
0.139 
 C(constant) imp 

Model(2):Dependent 
variable exp 

 
 

-258904 
132.715 

 
 

122371,1 
61.339 

 
 
0.445 
 

 
 

-2.116 
2.164 

 
 
0.048 
0.043 

(Constant)yr  

Model (3):Dependent 
variable imp 

 
-1576882 
795.648 

 
248375.8 
124.499 

 
0.826 

 
-6.349 
6.391 

 
0.000 
0.000 (Constant) yr 

Upper        Dependent      Mth   Rsq      d.f.        F Sigf     bound      b0    
  b1 
 IMPORT   LIN    .683         19   40.84  .000       -2.E+06    795.648 
 IMPORT   LOG  .682         19   40.73  .000       -1.E+07    1586584 
 IMPORT   EXP   .716        19   47.80   .000        7.4E-68   .0820 
 IMPORT   LGS   .716        19   47.80   .000   .   1.4E+67   .9212 
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                                  Table 6. Curve fit for exports and import 

 
 

Independent:  EXPORTS Upper Dependent  Mth   Rsq  d.f.       F  Sigf  bound      b0   b1 
IMPORT   LIN    .019    19     .38     .547        7799.20   .4499 
IMPORT   LOG  .050    19    1.00    .331        -25825     4202.39 
IMPORT   EXP  .061    19    1.23    .281         5575.60    8.0E-05 
IMPORT   LGS  .061    19    1.23    .281        .0002       .9999 

 

 
 

                                                Figure 1. Sudi Arabia Oil Production and Consumption(1980-2006) 

 

 
 

                                                         Figure 2. Curve Fit for Exports  
 

 
 

                                                    Figure 3. Curve Fit for Imports  
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                                                   Figure 4. Curve Fit for Imports and Exports 

 
Autocorrelations:   EXPORTS   exp 

 
 Auto- Stand.  
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob. 
 

  1.   762.   203       .              *******.*******                      14.019   .000 
  2   .420   .198                     ********                            18.509   .000 
  3   .161   .193                     ***                                  19.203   .000 
  4  -.008   .188                     *                                        19.205   .001 
  5  -.085   .182                   **                                     19.425   .002 
  6  -.084   .176                   **                                     19.653   .003 
  7  -.083   .170                   **                                    19.890   .006 
  8  -.240   .164                 *****                                  22.037   .005 
  9  -.346   .158               ******                                 26.847   .001 
 10  -.402   .151              *******                                33.933   .000 
 11  -.406   .144              *******                                 41.898   .000 
 12  -.289   .137                *****                                 46.391   .000 
 13  -.101   .129                   **                                47.007   .000   
 14   .043   .120                      *                               47.133   .000 
 15   .061   .111                        *                              47.435   .000 
 16   .068   .102                       *                                47.882   .000 

 
Plot Symbols:      Autocorrelations *     Two Standard Error Limits. 

 
Total cases:  21     Computable first lags:  20 

 
Figure 5.  Exports Autocorrelations 
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Partial Autocorrelations:   EXPORTS   exp 
   Pr-Aut- Stand. 
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1 
 

  1.   762.   218                    ********.****** 
  2  -.382   .218             ********         
  3   .026   .218                     *       
  4  -.073   .218                    *        
  5   .015   .218                     *         
  6   .033   .218                     *        
  7  -.097   .218                   **         
  8  -.438   .218             *********         
  9   .191   .218                     ****     
 10  -.284   .218               ******         
 11   .024   .218                     *         
 12   .130   .218                     ***      
 13  -.007   .218                     *         
 14  -.057   .218                    *         
 15   .016   .218                     *         
 16  -.102   .218                   **         

 
Plot Symbols:      Autocorrelations *     Two Standard Error Limits 

 
Total cases:  21     Computable first lags:  20 

 
Figure 6. Exports Partial Autocorrelations 

 

 
 

                       Figure 7. Exports Autocorrelation function 
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Autocorrelations:   EXPORTS   exp 

Auto- Stand 

Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob. 

                        

  1.   762.   203                     *******.*******           14.019   .000 

  2   .420   .198                  ********                  18.509   .000 

  3   .161   .193                  ***                      19.203   .000 

  4  -.008   .188                   *                         19.205   .001 

  5  -.085   .182                **                         19.425   .002 

  6  -.084   .176                **                          19.653   .003 

  7  -.083   .170                   **                       19.890   .006 

  8  -.240   .164                *****                      22.037   .005 

  9  -.346   .158               ******                      26.847   .001 

 10  -.402   .151              *******                      33.933   .000 

 11  -.406   .144              *******                      41.898   .000 

 12  -.289   .137                *****                      46.391   .000 

 13  -.101   .129               **                          47.007   .000 

 14   .043   .120                 *                         47.133   .000 

 15   .061   .111                      *                    47.435   .000 

 16   .068   .102                    *                      47.882   .000 

 

Plot Symbols:      Autocorrelations *     Two Standard Error Limits 

Total cases:  21     Computable first lags:  20 
 

Figure 8. Exports Autocorrelations 

 

Pr-Aut- Stand 

Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1 

 

  1.       762.   218             ********.****** 

  2  -.382   .218             ********        . 

  3   .026   .218             .        *       . 

  4  -.073   .218             .       *        . 

  5   .015   .218             .        *        . 

  6   .033   .218             .        *       . 

  7  -.097   .218             .      **        . 

  8  -.438   .218             *********        . 

  9   .191   .218             .        ****    . 

 10  -.284   .218             .  ******        . 

 11   .024   .218             .        *        . 

 12   .130   .218             .        ***     . 

 13  -.007   .218             .        *        . 

 14  -.057   .218             .       *        . 

 15   .016   .218             .        *        . 

 16  -.102   .218             .      **        . 

 

Plot Symbols:      Autocorrelations *     Two Standard Error Limits 

Total cases:  21     Computable first lags:  20 

 

Figure 9.  Partial Autocorrelations:   Exports    
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Auto- Stand. 

Lag  Corr.   Err. -1 -.75 -.5 -.25   0   .25 .5   .75   1   Box-Ljung Prob. 

 

  1.   644.   203       .              *******.*****              10.013   .002 

  2   .391   .198              .       ********                  13.905   .001 

  3   .222   .193              .       ****   .                  15.230   .002 

  4   .160   .188              .       ***    .                  15.959   .003 

  5   .058   .182               .      *     .                   16.060   .007 

  6  -.094   .176               .    **      .                   16.343   .012 

  7  -.086   .170               .    **      .                   16.599   .020 

  8   .014   .164               .      *      .                   16.606   .034 

  9   .013   .158                .     *     .                    16.612   .055 

 10  -.047   .151                .    *     .                    16.710   .081 

 11  -.064   .144                .    *     .                    16.905   .111 

 12  -.030   .137                 .   *    .                     16.953   .151 

 13   .007   .129                 .    *    .                     16.957   .201 

 14  -.084   .120                 .  **    .                     17.442   .233 

 15  -.206   .111                  ****   .                      20.870   .141 

 16  -.272   .102                 *.***   .                      28.017   .031 

 

Plot Symbols:      Autocorrelations *     Two Standard Error Limits. 
 

Total cases:  21     Computable first lags:  20 
 

Figure 10. Autocorrelations:   IMPORT 

 
Partial Autocorrelations:   IMPORT   imp 

Pr-Aut- Stand. 

Lag  Corr. Err. -1 -.75 -.5 -.25 0  .25  .5  .75   1 

 

  1.   644.   218        .             ********.**** 

  2  -.040   .218             .       *        . 

  3  -.024   .218             .        *        . 

  4   .062   .218             .        *       . 

  5  -.101   .218             .      **        . 

  6  -.172   .218             .     ***        . 

  7   .118   .218             .        **      . 

  8   .133   .218             .        ***     . 

  9  -.102   .218             .      **        . 

 10  -.067   .218             .       *        . 

 11   .025   .218             .        *       . 

 12  -.017   .218             .        *        . 

 13   .027   .218             .        *       . 

 14  -.115   .218             .      **        . 

 15  -.177   .218             .    ****        . 

 16  -.122   .218             .      **        . 

 

Plot Symbols:      Autocorrelations *     Two Standard Error Limits. 

 

Total cases:  21     Computable first lags:  20 

 

Figure 11. Partial Autocorrelations:   IMPORRTS 
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                                               Figure 12. M A for Imports and Exports   
 

However, the model from the figure seemed provided an acceptable fit to the analysis data of foreign trade statistics.    
    

 
DISCUSSION 

 
   The ARIMA methodology, a technique of time series analysis, that has gained enormous popularity in many areas and 
research practice, confirms its power and flexibility. However, because of its power and flexibility, ARIMA is a complex 
technique; it is not easy to use, it requires a great deal of experience, and although it often produces satisfactory results, 
those results depend on the researcher's level of expertise.  
   A common measure of the reliability of the model is the accuracy of its forecasts generated based on partial data so 
that the forecasts can be compared with known (original) observations. However, a good model should not only provide 
sufficiently accurate forecasts, it should also be parsimonious and produce statistically independent residuals that 
contain only noise and no systematic components. A good test of the model is (a) to plot the residuals and inspect them 
for any systematic trends, and (b) to examine the autocorrelogram of residuals (there should be no serial dependency 
between residuals).   
    It should be noted that the input series for ARIMA needs to be stationary, that is, it should have a constant mean, 
variance, and autocorrelation through time. Therefore, usually the series first needs to be differenced until it is stationary 
However, it should be kept in mind that some time series may not require differencing.                                          
    ARIMA models may also include a constant beside the standard autoregressive and moving average parameters. The 
interpretation of a (statistically significant) constant depends on the model that is fit.                                                            
A common research questions in time series analysis is whether an outside event affected subsequent observations. 
For example, did the implementation of a new economic policy improve economic performance? .In general, we would 
like to evaluate the impact of one or more discrete events on the values in the time series. 

 
 

CONCLUDING REMARKS 
 

This article has discussed the analysis of a time series model for foreign trade statistics .The ARIMA method used here 
may be appropriate only for a time series that is stationery and it is recommended that there are at least 50 observations 
in the input data (the underlying model has 21 observations). It is also assumed that the values of the estimated 
parameters are constant throughout the series .The article has discussed changes in the foreign trade for the period 
(1980-2010). The results for the analysis, indicated model, provide useful information for identifying trade trend. An 
important policy consideration rises from the study is that there is increasing trend for the model of the data. The use of  
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the time series model for forecasts estimates parameters for developing a model to predict changes in trade over time.    
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