Research Article

Crack problems in plane and antiplane elasticity using a singular integral equation

Imaekhai Lawrence

Author E-mail: oboscos@yahoo.com

Accepted 17 October 2013

Abstract

A numerical integration formula for the investigation of the singular integral of loakimidis for classical crack problems in plane and antiplane elasticity is developed. The method is based on a modification of the Gauss-Chebychev quadrature and the definition of finite part integral having and algebraic singularity of (-3/2) at the limits of integration. Once developed the procedure is applied to the determination of finite part integrals which have analytical solutions and the results are compared. Finally the integration formula is applied to an actual crack problem and the stress intensity factors are computed and presented.

Keyword: Singular Integral, Crack, Isotropic Polynomials, Stress Intensity, Quadrature.

INTRODUCTION

The singular integral equation of the first kind which arises in the investigation of straight cracks inside an isotropic elastic medium is

 $\frac{1}{\pi} \frac{d}{dx} \int_{-1}^{1} \frac{f(t)}{t-x} dt + \int_{-1}^{1} m(t,x) f(t) dt = -p(x),$ -1<x<1

In (1), f(t) is an unknown function proportional to the crack opening displacement, $\rho(x)$ is the pressure distribution along the face of this crack, and m(t,x) is a regular Kernel characteristic of the type of crack problem under investigation. Corresponding to (1) is the physical condition that the tips of the crack undergo no displacement $f(\pm 1) = 0$ (2)

(1)

(6)

 $f(\pm 1) = 0$ Performing the differentiation indicated in (1), one arrives at

 $\frac{1}{\pi} \int_{-1}^{1} \frac{f(t)}{(t-x)} dt + \int_{-1}^{1} m(t,x) f(t) dt = -p(x),$ -1<x<1 (3)

where the first integral denotes the finite part integral of Hadamard, that is, an integration technique in which fractional orders of infinity are removed (Kutt, 1990; Hadamard, 1990). The singular integral equation (3) is transformed to

 $\frac{1}{\pi} \int_{-1}^{1} \frac{f(t)}{t-x} dt + \int_{-1}^{1} 1(t,x) f'(t) dt = p(x),$ -1 < x < 1(4)
Where $\frac{\partial}{\partial t} 1(t,x) = m(t,x)$ By performing an integration by parts on it.
(5)

The physical condition (2) is replaced by its equivalent

$$\int_{-1}^{1} f'(t) dt = 0$$

A final integration by parts is performed on (4) and one arrives at (7) which is loakimidis singular integral equation (Loakimidis, 2011)

	$\frac{1}{2}\int_{-1}^{1} t-x f''(t)dt+\int_{-1}^{1}K(t,x)f''(t)dt=-p(x),$	
	$\pi^{-1} \leq x \leq 1$	(7)
	Where	
	$1(t,x) = \frac{\partial}{\partial x} K(t,x)$	(8)
	Performing an integration by parts on (6) one obtains	
	$\int_{-\infty}^{1} (t,c) f''(t) dt = 0$	(9)
	Where c is an arbitrary constant the significance of (6) and (9) is	that they make the determination of the constants of
(5	i) and (8) unnecessary.	
`	The unknown functions $f(t), f'(t)$ and $f''(t)$ are replaced by	regular unknown functions representing the proper
si	ngularities at <u>+</u> 1.	
	$f(t) = (1 - t^2)^{1/2} g(t)$	(10)
	$f'(t) = (1 - t')^{1/2} h(t)$	(11)
	$f''(t) = (1 - t')''^2 q(t)$	(12)
_	For a description of how the general form of (10) is obtained	t, the reader is referred to (Erdogan et al., 2012).
E	quations (11) and (12) are obtained by taking successive derivat	ive of (10). By performing these derivatives, one can
Se	be that $f(t)$ and $q(t)$ are $h(t) = -t a(t) + (1 - t^2) a'(t)$	(12)
	n(t) = -tg(t) + (1 - t)g(t) $n(t) = -tg(t) + (1 - t)g(t)$	(13)
	q(l) = -ln(l) + (1 - l) n(l) The stress intensity factors $K(+1)$ at the crack tips are given by (F	rdogan et al. 2012: Bucckner, 2010)
	$K(\pm 1) = \alpha(\pm 1)$	(15)
	$K(\pm 1) = g(\pm 1)$ $K(\pm 1) = \pm h(\pm 1)$	(16)
	K(+1) = q(+1)	(17)
	The solution of singular integral equation introduced by loak	midis (lokimidis, 2011) can be summarized in the
fo	llowing procedure:	
	(1) Substituting (12) into (7) and (9) to arrive at	
	$\frac{1}{2}\int_{-1}^{1}(1-t^2)^{-3/2}\ln t-x q(t)dt+\int_{-1}^{1}(1-t^2)^{-3/2}$	
	$\int_{\pi} \int_{-1}^{\pi} (-1)^{t} dt = \int_{-1}^{1} $	(18)
	$\int_{-1}^{1} (1 + t^2) = \frac{3}{2} (t + t^2) = \frac$	(10)
	$\int_{-1} (1 - t^2)^{-1/2} (t - c)q(t)dt = 0$	(19)
	(2) Approximating $q(t)$ by finite polynomials $\emptyset_k(k)$ of the form	
	$q(t) = q_n(t) = \sum_{k=0}^{\infty} a \emptyset(t) $ k k	(20)
	(3) Determining the form of $\phi_k(t)$, by performing an integration by	parts on the relation
	$\frac{1}{\pi} \int_{-1}^{1} (1-t^2)^{-1/2} \frac{T(t)}{t} dt = U_k(x)^{k+1} + 1 < x < 1, \ k \ge 0$	(21)
	Where $T_k(x)$ and $U_k(x)$ are Chebyshev polynomials of the first and	l second respectively, and it is arrived at
	$\frac{1}{2}\int_{-1}^{1}(1-t^{2})^{-3/2}In t-x \phi_{L}(t)dt = -U_{L}(x).$	
	$\pi^{j-1}(-1) = 0$	(22)
		(22)
	In (22), $\mathcal{O}_k(t)$, takes the form of one o the following equivalent exp	ressions
	$\phi_k(t) = tT_{k+1}(t) + (k+1)(1-t^2)U_k(t)$	(23)
	Or	
	$\phi_k(t) = -\frac{k}{2}T_{k+2}(t) + \frac{k+2}{2}T_k(t)$	(24)
	(4) Integrating by parts the relationship	(=)
	$\int_{-1}^{1} (1 + t^2) T dt = 0 k > 0$	(25)
	$\int_{-1} (1 - t) f_{k+1} dt = 0, \ k \ge 0$	(23)
	$\int_{-1} (1 - t^2)^{-3/2} (t - c) \phi_k(t) dt = 0, \ k \ge 0$	(26)
	The significance of (26) is that the condition of single value of dis	splacement (19) is automatically satisfied when $\phi_k(t)$
is	of the form of (23) or (24). Substituting (22) and (20) into (18), on Σ^n	e obtaines
	$\sum_{k=0}^{n} a_k [U_k(x) + \mathcal{O}_k(x)] = P(x) + r_n(x)$	(27)
	vvnere	
		(28)
	And $r(r)$ is an error term due to the approximation of $q(t)$ by	$a_{-}(t)$ To solve the system of $n+1$ linear equations

And $r_n(x)$ is an error term due to the approximation of q(t) by $q_n(t)$. To solve the system of n+1 linear equations represented by (27), loakimidis assured that $r_n(x_m) = 0$, m=0(1)n (29) at a set of collection points selected as the roots of the $T_{n+1}(x)$ m Chebyshev polynomial and arrived at

$$\sum_{k=0}^{n} a_k [U_k(x_m) + \phi_k(x_m)] = P(x_m), \ m = 0(1)n$$
⁽²⁹⁾

After determining the values of a_{k} , the stress intensity factors can be found from $K(1) = \sum_{k=0}^{n} a_k$ (30)

Or $K(-1) = \sum_{k=o}^{n} (-1)^k a_k$ (31)Equation (30) and (31) were arrived at by substituting (17) into (20) and using the relationships $\phi_k(1) = 1$ (32)and $\phi_k(-1) = (-1)^k$ (33)

METHOD

Development of the Quadrature Formula

The bulk of the numerical work lies in the evaluation of the integral (28). In this section the Gauss-Chebyshev quadrature will be applied to the evaluation of this integral. Before this can be accomplished, (28) must be put into a suitable form by using Kutt's definition for a finite part integral having a singularity of the order -3/2 (Kutt, 1990). The finite part integral definition that is of interest is

$$\int_{-1}^{0} \frac{f(t)}{(1+t)^{3/2}} = -2f(0) + 2\int_{0}^{1} f'(t-1)t^{-1/2}dt$$
(34)
Where $f(t)$ must satisfy the following conditions:

(a) f(t) is continuous in the interval, $1 \in [-1,0]$.

(b) f(t) is continuously differentiable once in a neighbourhood U of $t = -1 \in 1$.

To put (28) into the form of (34), the integration interval of (28) is broken into two parts.

$$\begin{split} \phi_k(x) &= -\int_{-1}^0 \frac{(1-t)^{-\frac{7}{2}} \phi_k(t) K(t,x)}{(1+t)^{\frac{3}{2}}} dt \\ &+ \int_{-1}^0 \frac{(1-t)^{-\frac{3}{2}} \phi_k(t) K(t,x)}{(1+t)^{\frac{3}{2}}} dt \end{split} \tag{35}$$

$$\begin{aligned} \text{Where} \end{aligned}$$

 $(1 - t^2)^{-3/2} = \frac{(1-t)^{-3/2}}{(1+t)^{3/2}} = \frac{(1+t)^{-3/2}}{(1-t)^{3/2}}$ (36) The second integral in (35) can be put into the form of (34) by using the transformation t = -y (Kutt, 1990) to arrive at $c^{1}(1-t)^{-\frac{3}{2}}\phi_{k}(t)K(t,x)$, $c^{0}(1-y)^{-\frac{3}{2}}$ ·---

$$+ \int_{0} \frac{1}{(1-t)^{\frac{3}{2}}} dt = \int_{-1}^{1} \frac{1}{(1+t)^{\frac{3}{2}}} \phi_{k}$$
(37)

Replacing the dummy variable y in (37) by t and substituting it into (35), the following equation is obtained

3	
$(1+y)^2$	(00)
$+ \varphi_k (-t) \mathcal{K}(-t, x)] dt$	(38)
In (38), the $f(t)$ corresponding to the definition (34) is	
$f(t) - (1 - t)^{-3/2} [\phi_k(t) K(t, x) + \phi_k(-t) K(-t, x)]$	(39)
Taking the derivative of (39), the following is obtained	
$f'(t) = [(K'(t, x)\phi_k(t) - K'(-t, x)\phi_k(-t, t))]$	
+ $(K(t, x)\emptyset'_{k}(t) - K(-t, x)\emptyset'_{k}(-t,))]/(1-t)^{-3/2}$	
$+\frac{3}{2}(K(t, x)\phi_{k}(t) + K(-t, x)\phi_{k}(-t,))/(1-t)^{5/2}$	(40)
\tilde{W} here K' (t, x) = 1 (t, x). Using the expression	
$(1 - t^2) U_k(t) = t T_{k+1}(t) - T_{k+2}(t)$	(41)
and substituting (41) into (23), the expression for ϕ_k (t) becomes	
$\emptyset_{k}(t) = (k+2) t T_{k+1}(t) - (k+1) T_{k+2}(t)$	(42)
Differentiating (42) and using the relationship	
$T'_{k}(t) = (k + 1)U_{k}(t)$	(43)
the following equation is obtained	
$\phi_k(t) = (k+2)T_{k+1}(t) + (k+1)(k+2)[tU_k(t) - tU_k(t)]$	(44)

Using the expression				
$-T_{k+1}(t) = U_{k+1}(t) - tU_k(t)$	(45)			
The final expression for $\emptyset'_k(t)$ becomes				
$\emptyset'_{k}(t) = -k(k+2)T_{k+1}(t)$	(46)			
Applying the finite part definition (34) to (38), $\phi_k(t)$ becomes				
$\phi_{k}(x) = -\left[-4\phi_{k}(0)K(0,x) + 2\int_{0}^{1}f'(t-1)t^{-\frac{1}{2}}dt\right] $ (47)				
Where $f'(t - 1)$ is obtained by replacing t by $(t - 1)$ in (40).				
To evaluate the integral in (47), the following Gauss-Chebyshev quadra	ture will be used			
$\int_{-1}^{1} \frac{1}{\sqrt{1-z^2}} F(z) dt = \sum_{i=0}^{n} w_i F(z_i)$	(48)			
Where				
$w_i = -\frac{\pi}{2}$	(49)			
(n+1)				
$\pi = \cos\left(\frac{(2i+1)\pi}{2}\right)$	(50)			
$Z_i - \cos\left(\frac{1}{(2n+2)}\right)$	(50)			
The integral in (47) will be transformed using the following transformation $\frac{(7+1)}{(7+1)}$	n			
$t = \frac{(2+1)}{2}$	(51)			
and				
$dt = \frac{1}{2}dz$	(52)			
Performing the transformation, the integral becomes				
$\int_{0}^{1} f'(t-1)t^{-\frac{1}{2}}dt = \frac{1}{2} \int_{-1}^{1} \left(z + \frac{1}{2}\right)^{-1/2} f'\left(\frac{z-1}{2}\right) dz$	(53)			
Multiplying (53) by				
$\sqrt{1-z^2} (1-z)^{\frac{1}{2}}(1+z)^{\frac{1}{2}}$	(EA)			
$\overline{\sqrt{1-z^2}} = \overline{\sqrt{1-z^2}}$	(54)			
The weakly singular term (53) is eliminated and the integral becomes				
$\frac{\sqrt{2}}{2}\int_{-1}^{1}\frac{(1-z)^{1/2}}{\sqrt{z-2}}f'(\frac{z-1}{2})dz$	(55)			
Using (48) to approximate (55) and substituting into (47), the expression	for \emptyset_{k} (t) becomes			
$\phi_{i}(t) = 4\phi_{i}(0) K(x, 0) = \sqrt{2} \sum_{k=1}^{n} w_{i}(1 - z_{i})^{1/2} \left(\frac{z_{i}-1}{z_{i}}\right)$	(56)			
$\psi_k(0) = \psi_k(0) \wedge (\lambda, 0) = \psi_2 \sum_{i=0}^{n} \psi_i(1 - \sum_i) \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	(00)			
$T_{\rm ev}$ (0) = 0	(57)			
And	(01)			
$T_{2k}(0) = (-1)^k$	(58)			
(56) takes the following forms				
$\left(\frac{z_i-1}{2}\right)$ (k: even)	(59)			
$ \emptyset_{k}(t) = -\sqrt{2}\sum_{i=0}^{n} w_{i}(1-z_{i})^{1/2} fi\left(\frac{z_{i}-1}{2}\right)(k:odd) $	(60)			
$A_{1} = C_{1} \left(\frac{z_{j}}{z_{j}} - 1 \right)$ and $z_{j} = C_{1} \left(\frac{z_{j}}{z_{j}} - 1 \right)$				

Where $fi\left(\frac{z_i-1}{2}\right)$, w_i , and z_i are given by (40), (49), and (50) respectively.

RESULTS

An Application of the Quadrature Formula

To test quadrature formula, the integral which has the value given by the expression in (61) will be evaluated using the quadrature formula.

$$\int_{-1}^{1} \frac{x^{q}}{(1-x^{2})^{3/2}} dx = \beta\left(-\frac{1}{2}, \frac{q-1}{2}\right), q \text{ is an integer} \ge 0$$
(61)

In (61) $\beta\left(-\frac{1}{2},\frac{q-1}{2}\right)$ denotes the Beta function evaluated at the arguments $-\frac{1}{2},\frac{q-1}{2}$. for the case q > 1, applying the quadrature formula to (61) results in

$$\int_{-1}^{1} \frac{x^{q}}{(1-x^{2})^{3/2}} dx = \frac{\sqrt{2\pi}}{(n+1)} \sum_{i=0}^{n} (1-x_{i})^{\frac{1}{2}} \left[q(1-y_{i})^{-\frac{3}{2}} \left[y_{i}^{q-1} - (-y_{i})^{q-1} \right] + \frac{3}{2} (1-y_{i})^{-\frac{5}{2}} \left[x^{q} + (-x)^{q} \right] \right]$$
(62)

Where

and

$$x_{i} = \cos\left(\frac{(2i+1)\pi}{(2n+2)}\right)$$
(63)
$$y_{i} = \frac{(x_{i}-1)}{2}$$
(64)

In Table 1, when n = 10 the numerical values obtained by evaluating the integral using (64) for even values of q up to 20 are presented along with the analytical values from (61).

Table 1. Evaluation of (64)

α	Gauss-Chebyshev	β
2	- 3.14154264	-3.14159266
4	-4.17238895	-4.71238898
6	-5.89048623	-5.89048623
8	-6.87223393	-6.87223393
10	-7.73126318	-7.73126317
12	-8.50438951	-8.50438949
14	-9.21308864	-9.21308862
16	-9.87116641	-9.87116638
18	-10.4881143	-10.4881143
20	-11.0707873	-11.0707873

Application of Quadrature Formula to a Crack Problem

The crack problem under investigation is taken from (Erdogan et al., 2012).

In Figure 1, the composite plane is loaded in such a way that the normal component of the crack surface loading is the only external surface load. The starting integral equation for the investigation of this problem is

$$\frac{1}{\pi} \int_{a}^{b} \frac{\phi(r_{o})}{r_{o}-r} dr_{o} + \frac{1}{\pi} \int_{a}^{b} H(r, r_{o}) \phi(r_{o}) dr_{o} = \frac{1+k_{l}}{2\mu_{1}} P(r)$$
(65)

Where μ_1 and μ_2 are the shear moduli, $K_i = (3 - v_i)/(1 + v_i)$ for generalized plane stress, $K_i = 3 - 4v_i$ for plane strain, v_i is Poisson's ratio and *m* is defined as μ_2/μ_1 . In (65) $H(r, r_o)$ has this form

$$H(r, r_{o}) = \frac{1}{2(1+mk_{1})(m+k_{2})} \{\frac{1}{r+r_{0}} [(1+mk_{1})(m+k_{2}) - m(1+K_{1})(1+mk_{1}) -3(1-m)(m+k_{2})] + 12(1-m)(m+k_{2})\frac{r}{(r_{0}+r)^{2}} - 8(1-m)(m+k_{2})\frac{r^{2}}{(r_{0}+r)^{2}} \} (66)$$
To normalize the interval (*a,b*), the following equations will be used
$$x = \frac{(r-c)}{a_{o}}, t = \frac{r_{0}-c}{a_{0}}, a_{o} = \frac{(b-a)}{2}$$
(67)
$$\frac{1+k_{1}}{2\mu}P(r) = P(x), \phi(r_{0}) = f'(t)$$
(68)
$$\frac{1}{\pi}H(r,r_{o}) = \frac{1}{a_{0}}1(x,t)$$
(69)
Performing the normalization (65) becomes
$$\frac{1}{\pi}\int_{-1}^{1}\frac{f'(t)}{t-x}dt + \int_{-1}^{1}1(x,t)f'(t)dt = P(x)$$
(70)

where

Figure 1. A finite crack perpendicular to the bi-material interface

$$1(x, t) = \frac{1}{2\pi(1+mk_1)(m+k_2)} \{\frac{1}{x+B+2D} [(1+mk_1) \\ (m+k_2) - m(1+k_1)(1+mk_1) \\ -3(1-m)(m+k_2)] + 12(1-m)(m+k_2) \\ \frac{x+B}{(x+B+2D)^2} - \frac{8(1-m)(m+k_2)(x+B)^2}{(x+B+2D)^3} \}$$
(71)
and
$$D = \frac{c}{2}$$
(72)

Integrating (71) with respect to t, K(t,x) in (7) is found to be

$$K(x, t) = \frac{1}{2\pi(1+mk_1)(m+k_2)} \{ [(1+mk_1)(m+k_2) - m(1+k_1)(1+mk_1) - 3(1-m)(m+k_2)]$$

$$- m(1+k_1)(1+mk_1) - 3(1-m)(m+k_2)]$$

$$\ln (x+t+2D) + \frac{12(1-m)(m+k_2)(x+D)}{(x+t+2D)} + \frac{4(1-m)(m+k_2)(x+D)^2}{(x+t+2D)^2} \}$$
(73)

In the following tables 2, 3,4, the stress intensity factors calculated from (29), (30), and (31) will be presented along with the values computed in (Erdogan et al., 2012).

able 2. Stress intensit	y factors for case	m = 0 and $p(x) = -$	$-p_0$ a contant <i>n</i> =10, Q = 25
-------------------------	--------------------	----------------------	---------------------------------------

D	Gauss-Chebyshev Quadrature		F. Erdogan et al., (1973)	
	r0\~0)	$p_o(a_o)^{1/2}$	$p_o(a_o)^{1/2}$	$p_o(a_o)^{1/2}$
1.01	1.327	3.715	1.330	3.720
1.05	1.251	2.152	1.254	2.159
1.10	1.208	1.756	1.211	1.759
1.15	1.180	1.573	1.813	1.573
1.20	1.160	1.461	1.163	1.464
1.25	1.144	1.385	1.146	1.388
2.00	1.051	1.089	1.054	1.091
5.00	1.006	1.008	1.009	1.011
10.0	0.999	0.999	1.002	1.003

Table 3. Stress intensity factors for case m = 23.08 and $p(x) = -p_0$ for plane strain n = 10, Q = 25

	Gauss-Chebyshev Quadrature		F. Erdogan et al., (1973)	
β	$p_o(a_o)^{1/2}$	$p_o(a_o)^{1/2}$	$p_o(a_o)^{1/2}$	$p_o(a_o)^{1/2}$
1.10	0.8994	0.6677	0.8985	0.6674
1.15	0.9060	0.7182	0.9051	0.7178
1.25	0.9174	0.7843	0.9165	0.7838
2.00	0.9626	0.9357	0.9616	0.9349
5.00	0.9939	0.9923	0.9929	0.9912
10.0	0.9993	0.9990	0.9981	0.9979

Table 4. Stress intensity factors for case m = 23.08 and $p(x) = -p_0 x$ for plane strain n = 10, Q = 25

	Gauss-Chebyshev Quadrature		F. Erdogan et al., (1973)	
β	$p_o(a_o)^{1/2}$	$p_o(a_o)^{1/2}$	$p_o(a_o)^{1/2}$	$p_o(a_o)^{1/2}$
1.10	0.5084	-0.4058	0.5084	-0.4058
1.15	0.5075	-0.4300	0.5075	-0.4300
1.25	0.5062	-0.4564	0.5062	-0.4564
2.00	0.5019	-0.4943	0.5019	-0.4942
5.00	0.5016	0.4998	0.5002	-0.4997
10.0	0.5000	0.5000	0.5000	0.4999

CONCLUSION

The advantage of the proposed integral equation is that its kernel is weakly singular and that the numerical solution of singular integral equations with logarithmic singularities is more classical than the numerical solution of Cauchy type singular integral equations. Also the physical condition is automatically satisfied because of the choice of q(t). Finally,

f''(t) has a physical interpretation proportional to the second derivative of the crack opening displacement almost equal to the curvature of the deformed edges of a straight crack after moving away from the crack tip. The simplicity of the quadrature makes possible the evaluation of a large number of linear equations (*m*) in (29). Application of Gauss-Chebyshev Quadrature to a finite crack perpendicular to the bi-material interface showed good agreement with the numerical results by Erdogan (Erdogan et al., 2012.

REFERENCES

Bucckner HF(2010). "Mechanics of Fracture, vol. 1: Methods of Analysis and Solution of Crack Problems, ed. G. C. Sin, Noordhoff, Leydon, pp. 239-314.

Erdogan F, Gapta .D, Scoon I(2012). "Mechanics of Fracture, vol. 1: Methods of Analysis and Solution of Crack Problems, ed. G.D. Sin, Noordhoff, Leydon, Pp. 368-425.

Hadamard J(1990). "Lectures on Cauchy's Problem in Linear Partial Differential Equations", Yale University Press.

Loakimidis NO(2011). "A New Singular Integral Equation for the Classical Crack Problem in Plane and Antiplane Elasticity". 21: 115-122.

Kutt HR(1990). "On the Numerical Evaluation of Finite Part Integrals Involving an Algebraic Singularity", National Research Institute for Mathematical Sciences.