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Abstract 

 

The paper presents the analysis of a nonlinear parametric system consisting of a rotor with rectangular 
cross–section placed in a rigid self–excited base. The parametric instability zones have identified on 
the basis of the method of expanding into a power series in relation to two perturbation parameters 
(one connected with parametric excitation, the other with friction coefficient). The influence of the 
changes of chosen parameters of the system on the size and instability zones of the first order has 
been investigated.  
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INTRODUCTION 
 
Friction induced self–excited vibrations and parametric vibrations occur in many physical systems and have been in the 
focus of interest for a long time in many works concerning vibrations (Stoker, 2010; Minorsky, 2011; Hayashi, 2011; 
Cunningham, 2011). Both kinds of vibrations may be considered as sufficiently known. However, when both excitations 
occur simultaneously in one system, the phenomenon is more complex (see for example, Alifov and Frolov; 2012). On the 
other hand, this case occurs in technology, because e.g. in the combustion engine, in certain conditions self–excited 
vibrations of the piston and parametrically excited vibrations together with forced vibrations are analyzed in this paper. The 
parametric excitation and the exciting force come from the rotor with rectangular cross–section, which has in its middle a cylinder-like 
mass concentrated eccentrically on it. The rotor is fixed on a base placed on a belt moving at constant velocity. At a certain value of the 
belt velocity and the frequency of rotor turns, parametric and self–excited vibrations are created in addition to the forced vibrations. 

As the parametric excitation µ and the friction coefficient є are small in such in such a system they have been recognized as 
perturbation parameters. The methods with one perturbation parameter used to determine the limits of the stability–loss zones are 
widely described in the literature, and their extensive presentation is given by Malkin, 2010; Giacaglia, 2010; Lakubovic and Starzinsky, 

2013. However, the analytical approach based on introducing of two independent perturbation parameters is rarely used in 
mechanics. This paper present a general analytical technique for calculating the limits of stability in the system with self 
excited and parametric vibrations and develops authors earlier works  (Awrejcewicz, 2010, 2011). 
 
 
METHOD 
 
The Analyzed System and Equations of Motion 
 
The diagram of the analyzed system is presented in Figure 1. A weightless shaft with rectangular cross–section with a 
cylinder–like mass concentrated in its center is supported in the base placed on a belt moving at constant velocity Ѵ₀. The 
friction coefficient between the belt and the base depends on their relative velocity. The character of this  
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Figure 1. Diagram of the analyzed system  

 

 
 

Figure 2. Dependence of the friction coefficient on the relative velocity  

 

 
 

Figure 3. Calculation model of the system 

 
dependence (Figure 2) causes the creation of self–excited vibrations. The effect is described in the basic works on 
nonlinear vibrations. On the other hand, considering the non–identical cross–section of the rotor at same values of its 
rotational speed, parametric vibrations occur. The vibrations cause the changes of the normal force holding down the 
base to the belt in vertical direction, and hence they cause the changes of the friction force. It is assumed that the 
vibration of the rotor does not cause the tearing of the base off the belt. 

The calculation model of the analyzed system is presented in Figure 3. The equations of motion of the system have the 
form;  
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m×̈c = - ξwkξcosφ - ηwkηsinφ 
  mÿc = ξwkξsinφ + ηwkηcosφ + mg 
  I2’’̈ø̈= - Mo + a (-ξwkξcosφo + ηwkηsinφo)                                         (1) 
 
Where; 
xc̦ yc : Coordinates of the centre of mass of the cylinder, 
l2” : Mass moment of the inertia of a cylinder with mass m in relation to the z” axis of the O” x”  y” z”  system moving 

with translator motion in relation to Oxyz 

ξw,ηw. : Coordinates of the point of puncture by the shaft in the coordinates system o’ ξn 
o’ ξη  : Coordinates system whose axes are parallel to the main, central inertia axes of the cross section of the shaft. 
  
kξ,kη    : Shaft rigidities in the direction of the axes ξ and η 
Mo    : Driving torque reduced by all the resistance torques 
A,Φo    : Parameters characterizing the position of the centre of mass of the disk C in relation to the point of puncture by 

the shaft.  
For the state near the steady ones the torque Mo is very small. Let  

 Iz’’ = mis
2                                                                 

(2)
 

Where is is the inertia radius, then the third equation of the Equation. (1) will assume the form 

 
ø̈ = 1 – a  ( -ξwkξcos φo † ηwkл sinφo)                                               (3) 
       m   is2 

 
As the eccentricity a and the shaft deflection ξw and nw are small as compared to the inertia radius, and then the following 
can be assumed:  
ø̈ = 0, ø̈ = w == const, φ = wt                                                 (4) 
 
The following geometric dependences result from the Fig 3:  

ξw = (xw – x) cosφ - ywsinφ 
nw = (xw – x) sinφ - ywcosφ 
yc = yw + acos(φ + φo) 
xc = xw + asin(φ + φo)                                                     (5) 

where xw, yw are the coordinates of the point of puncture by the shaft W in the system Oxy.  
 

In order to write down the equations of motion of the mass M it is necessary to determine the dynamic reactions on the 
shaft in its points of support. They are determined from the equations of equilibrium.  

 

X1 + X2 + ξwkξcosωt + ηwknsinωt = 0      
Y1 + Y2 + ξwkξsinωt + ηwkncosωt = 0                                                  (6) 
Where X1, Y1 and X2, Y2 denote the support reactions on the left and right end of the shaft, respectively. 

The rotor reactions on the support are then as follows  
 
Rx = - X1, X2 

Ry = - Y1, Y2                                          (7) 
The equation of motion of a body with mass M, on the assumption that Mg + Ry > 0, has the form  
 
M×̈ = - kx - cx· + Rx + (Mg + Ry) μ(ω), 
ω = vo - ×·                                         (8) 
 

The dependence of the friction coefficient on the relative velocity w can be circumscribed with the 
polynomial  

 
w = εsgnω – αω + βω3                                                     (9) 
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Finally, the equations of motion of the analyzed system, after assuming that x = x1, xw = x2, yw = x3,   have the 
form: 

 
× ̈1 = - x1 [Ω2 + Ω2ξ + Ω2η + (Ω2ξ - Ω2η) cos2ωt] - H×·1 + x2 [-(Ω2ξ - Ω2η) + - (Ω2ξ - Ω2η) cos2ωt] – x3 (Ω2ξ - Ω2η) sin2ωt + 
{g – x2 (Ω2ξ - Ω2η) sin2ωt + - x3[-(Ω2ξ 

- Ω2η) + (Ω2ξ - Ω2η) cos2ωt] + x1 (Ω2ξ - Ω2η) sin2ωt}. [εsin (voe×·1) – α(vo - ×·1) + β(vo - ×·1)3]        (10)  
 

× ̈2 – x2 [ω2ξ - ω2η + (ω2ξ - ω2η) cos2ωt]- x2 [ω2ξ - ω2η + (ω2ξ - ω2η)cos2ωt] 
+ x3 [(ω2ξ - ω2η)sin2ωt + α2ωsin(wt + φo) 
× ̈3 = - x1 (ω2ξ - ω2η) sin2ωt + x2(ω2ξ - ω2η) sin2ωt + x3[-(ω2ξ - ω2η) + (ω2ξ - ω2η). cos2ωt] + αω2cos(ωt + φo) + g 

 
Where  Ω2  = k ,   Ω2ξ = kξ ,    Ω2η =  k , 
                     M             2M         2M 
 H  =     C ,      ω2ξ =   ks ,  ω2n =  kη , 
                          M         2m  2M 
 
 

Transformation of the Equations of Motion to the Main Coordinates 
 
Let us introduce the following denotations 
  

Ω12 = Ω2ξ + Ω2n : Ω22  = Ω2ξ - Ω2η : 
ω12 = ω2ξ + ω2η : ω22  = ω2ξ - ω2η : x = α : ρ = β : H =   μH1 : 
                 ε            ε  

acosφo = μP : 
asinφo = αQ : μG = g                                                                                               (11) 
where;  μ = ω22 =  Ω22 = kξ - kn is the perturbation parameter. 
        ω21      Ω21     kξ + kn 
After accounting for (11) in the equation system (10), it will assume the form  

 
× ̈1 = - ×1 Ω2 - ×1 Ω21(3 + μcos2ωt) - μHix·1  +×2 Ω21(1 + μcos2ωt) + ×3Ω21μsin2ωt + ε(g – x2 Ω21μsin2ωt) + 
×1Ω21μsin2ωt+×3 Ω21(1 - μcos2ωt) · [sgn (vo - ×·1) - x(vo - ×·1) + ρ(vo - ×·1)3] : 
× ̈2 = - ×1ω21(1 + μcos2ωt) - ×2 ω21(1 + μcos2ωt)+ x3ω21μsin2ωt + μ(Psinωt + Qcosωt) w2 
× ̈3 = - x1ω21μsin2ωt + ×2ω21μsin2ωt - x3ω21(1 - μcos2ωt)  + μ(Pcosωt – Qsinωt)w2+ μG  (12) 

 
When introducing μ = ε = 0 into the equation system (12), we obtain a homogeneous linear differential 
equation system  
× ̈1 + ×1(Ω2 + Ω21) – ×2Ω21 = 0  
× ̈1 + ω21(×2 ×1) = 0 
× ̈3 + ω21×3 = 0                                                                                                  (13) 

 
When assuming the solution of (13) in the form xi = Aicosρt, i = 1,2,3, we find the following frequencies  

 

p21.2 = ½[ Ω2 + Ω21 + ω21 ±√Ω2 + Ω21 + ω21)2 - 4 Ω2ω21]                                                                    (14) 
p23 = ω21 
Let us introduce the main coordinates ξi, for which at μ = ε = 0 disjugation of the linear part of the first two 
equations of the system (12) will occur. Let us now multiply these equations by ξi and ξ2, respectively, and add 
the sides. The result will be  
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× ̈1ξ1 + ×1 (Ω2 + Ω21) ξ1 - ×2Ω21ξ1 + ×̈2ξ2 +×̈1w21ξ1 - ×̈1ω21ξ1 = μ[-×1Ω21cos2ωtξ1 – H1×̄1ξ1 + ξ1×2Ω21cos2ωt – 
ξ1×3Ω21sin2ωt   + ξ2×1ω21cos2ωt – ξ2×2w21cos2ωt + ξ2×3ω21sin2ωt +ω2ξ2(Psinωt + Qcosωt)] +ε ξ1[g - ×2Ω21μsin2ωt 
+×3Ω21 (1 – μcos2ωt) + ×1Ω21μsin2ωt] · [sgn(vo - ×̄1) - ×(vo - ×̄1) + ρ(vo - ×̄1)3]                          (15) 

 
By denoting 
(Ω2 + Ω21) ξ1 - w21 = ξ1θ2 - Ω21ξ1 + ω21ξ2 = ξ2θ2                                                   (16) 
 
We find  
(Ω2 + Ω21 - θ2) ξ1 + ω21ξ2 = 0 
-  Ω21ξ1 + (ω21 - θ2)ξ2 = 0                                (17) 
 
In order for Equation (17) to be fulfilled for ξ1 and ξ2 different from zero, the following dependence must occur. 
  
Ω2 + Ω21 - θ2 - ω21      =   0 
- Ω21      ω21 - θ2  
 
hence   
 
Θ12 = ρ12 and Θ22 = ρ22                                                                                                                                                                                                                (18) 
 
Let ξ1 = ξ’1 and ξ2 = ξ’2 be denoted for θ1 = ρi · from the second equation of the system (16) we find 
  
 ξ’2 = y1 ξ’1                                                                                                                                              (19) 
 Where  
γ1 =      Ω21  

      ω21 - ρ21  
 
Making use of the dependences (16) and (19), the Equation (15) is transformed to the form 
 
× ̈1 + ×1 ρ12 + ×̈2 γ1 + ×2 ρ12γ1= μ[×1 ρ12γ1cos2ωt – H1×̄1 - ρ12γ1×2cos2ωt + ρ12γ1×2sin2ωt + γ1ω2(Psinωt + Qcosωt)] + 
ε[g - ×2Ω12μsin2ωt + ×3Ω12 (1 –  
μcos2ωt) + ×1Ω12μsin2ωt] · [sgn (vo - ×̄1) - ×(vo - ×̄1) + β(vo - ×̄1)3]                                                         (20) 
 
Analogously, for θ2 = P2 the following are denoted;  ξ1 = ξ”1 and ξ”2 = ξ”2 while 
 
ξ”2 = γ2ξ”1                                                     (21) 
 
where;  
γ2 =    Ω12 
      ω12 – ρ22 
 
Taking (16) and (21) into account in (15), the equation will assume the form   
 
× ̈1 + ×1 ρ22 + ×̈2 γ2 + ×2 ρ22γ2= μ[×1γ1ρ22cos2ωt – H1×̄1 - ×2γ2ρ22cos2ωt +  
[×3γ2ρ22sin2ωt + γ2ω2(Psinωt + Qcosωt)] + ε[g - ×2Ω12μsin2ωt + ×3Ω12 (1 – μcos2ωt) + ×1Ω12μsin2ωt] · [sgn (vo - x 
̇1) - ×(vo - x ̇1) + β(vo - x ̇1)3]                                                                                                                            (22) 
Let us denote  
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y1 = ×1 + γ1×2  
y2 = ×1 + γ2×2                                                                   (23) 
 
The reserve dependences can be determined from the Equation (23) 
 
×1 = β1y1 – β2y2                                                                                          (24) 
×2 = φ(y1 – y2) 

 
Where; β1 =  γ2    ,              β2 = γ2   ,                 φ1  = 1 
            γ2 – γ1             γ2 – γ1                        γ2 – γ1 

 
Let us additionally assume that ×3 = y3  
 
Taking (23) and (24) into account in (22), (20) and (12) we shall obtain the following differential equation system   

 
ÿ1 + ρ12 y1 = μ[ρ12 γ1(β1y1 - β2y2)cos2ωt- H1(β1ỳ1 - β2ỳ2) - ρ12 γ1Ψ·(y1 – y2) cos2ωt + ρ12 y1 y3sin2ωt + ω2γ1 (Psinωt + 
Qcosωt)]+ ε[g – μ Ω12)Ψ(y1 – y2) cos2ωt + μ Ω12 (β2y1 - β2y2) sin2ωt + Ω12y3(g – μcos2ωt)][sgn (vo - β2ỳ1 + β2ỳ2) – x 
(vo - β2ỳ1+ β2ỳ2) + ρ (vo - β2ỳ1 + β2ỳ2)3]: ÿ2 + ρ22 y2 = μ[ρ22 γ2(β1y1 –β2y2) cos2ωt- H1 (β1ỳ1 - β2ỳ2) + ρ22 γ2Ψ (y1 – y2) 
cos2ωt+ ρ22 y2 y3sin2ωt + ω2γ2 (Psinωt + Qcosωt)]+ ε[g – μ Ω12)Ψ(y1 – y2)sin2ωt + μΩ12(β1y1 - β 

2y2) sin2ωt + Ω12y3 (1 – μcos2ωt)][sgn (vo - β2ỳ1 + β2ỳ2) – x(vo - β2ỳ1+ β2ỳ2) + ρ(vo – β1ỳ1 + β2ỳ2)3]       (25) 
 
 ÿ3 + ρ32 y3 = μ[- ρ32(β1y1 - β2y2)sin2ωt + ρ32Ψ(y1 – y2)sin2ωt + ρ32  
y3cos2ωt + ω2(Pcosωt + Qsinωt) + G] 
 
After introducing the dimensionless time τ = ωt, we obtain 
 
ÿ1 + λ12 y1 = μ[λ12γ1(ε1y1 – ε2y2)cos2τ - λ1Ĥ1(β1y’1 - β2y’2) + λ12 y3sin2τ 
+ γ1(Psinτ + Qcosτ)] + ε[g + μΩ12(ε1y1 - ε2y2)sin2τ + Ω12y3(1 – μcos2τ)] ·         

 
   sgn(vo – β1ωy’1 - β2ωy’2)  + - λ1×̈1(λ1v’o – β1y’1 + β2y’2)+ ωρ(λ1v’o – β1y’1 +  
 
β2y’2)3] ÿ2 + λ22 y2 = μ[λ22γ2(ε1y1 – ε2y2)cos2τ- λ2Ĥ2(β1y’1 - β2y’2) +   γ2λ22  
y3sin2τ + γ2(Psinτ + Qcosτ)] + ε[g + μΩ12(ε1y1 - ε2y2)sin2τ + Ω12y3(1 –  
μcos2τ)] ·        
 
    sgn(vo – β1ωy’1 - β2ωy’2) + - λ2×̈2(λ2v”o – β1y’1 + β2y’2)  
 
+ ωρ(λ1v”o – β1y’1 + β2y’2)3 ÿ3 + λ3

3 y3 = μ[ - λ3
2(ε1y1 – ε2y2)sin2τ+ λ3

2y3cos2τ + Pcosτ + Qsinτ + λ3
2Ğ] 

 
Where; 
yi  =        ; λi

2 =  ’ i = 1, 2, 3 
 
 
εk = βk – 𝜑, k = 1,2  

 
×̈k =   × 
         pk 
 

Ğ =      ; Ĥ1 =  ; v’o =         ; v”o =        ;  Ĥ1 = 
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Zones of instability of the first order 
 
The procedure of solving the equation system (26) consists in assuming two perturbation parameters μ and ε connected 
with parameter excitation and friction, respectively.  
The sought periodic solutions of yi (τ) are presented in the form of a double power series:  

 
yi (τ) = y0,0 + μy0,1 + μ2y0,2 + …  
 
 + ε(y0,1 + μy1,1 + μ2y1,2 + …) +                                                                       (27) 
 

Where: yk,1k,1 = 0,1,2, … must fulfill the condition of periodicity. Periodic solutions are only possible for certain 

values of the parameters λi presented in the form of analogous series:  
 
λi = n2 + μα0,1 + μα0,1 + … + ε(α1,0 + μα1,1 + μ2α2,2 + …) +                                           (28) 

 
Where: αk,1 k,1 = 0,1,2 … are the unknown coefficients, which are determined from the condition of periodicity, avoiding in 
the solution terms unrestrictedly growing in time. For the resonance of the first order n

2
 = 1 we shall determine the 

parametric instability zones, for which the frequency of parameter modulation fulfills, consecutively, the dependences 
ω≅p1, ω≅p2, and ω≅p1. In series (27) and (28) for ω≅p1 and ω≅p2 we shall limit our considerations to the first powers of 
the small parameters μ and ε. On the other hand, for ω≅p3 we shall limit ourselves in the calculations to the second 
approximation. In all the three cases we shall assume that sgn(vo – β1ωy’1 - β2ωy’2) = 1 

 
Let 

 λ2 = ν2,1λ1   

 
 
λ3 = ν3, 1λ1                                                                          (29) 
 
where:  

 ν2,1 =  
 
 
ν3,1  = 

 
and let us assume that ν2,1 and ν3,1 are not integers. Let us first consider the case ω≅p1 assuming that  

  
yo.2o(τ) = yo.o(τ) = 0                                                                      (30) 

 
The assumption is accounted for by a weak conjugation of the Equation (26) and ε≪1 and μ≪1. For μ = ε = 0 we shall 
obtain a disjugate system of three linear differential equations. For the resonance coordinate y1 , the magnitude of 
oscillation of the other two main coordinates should be of the order of the small parameters μ and ε.  
Let us substitute the series (27) and (28) in the differential Equation (26) taking into consideration the dependences (29) 
and (30) and the expansion.  

 

λ1≅1 + 𝜇
𝑎0,1

2
+  𝜀

𝑎0,1

2
+  …                                                                   (31) 

 
After equation to zero the coefficients at the same powers ε and μ, we obtain a system of recurrent differential equations  

 
y”o.o + yo.o = 0  
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y”o.o + yo.o = - α1,0yo.o +    - - gẍ1vo    + gẍ1β1y’o.o + gωρ(vo)3 - 3gωρ(vo)2β1y’o.o+ 3gωρvoβ1(y’o.o)2 + gωρβ1(y’o.o)3; y"o.o + y’o.o = - α0,1yo.o 

+ γ1ε1 yo.o 
cos2τ – Ĥ1β1y’o.o + γ1Psinτ + γ1Qcosτ ;y”1,0 + v2,1y1,0 = g · v2,1/P2gv2,1 ẍ1v”o+ gv2,1 ẍ2β1y’o.o + gωρv2,1(v”o)3 + 
3gωρv2,1β1(v”o)2 β1y’o.o+ 3gωρv2,1v”oβ1(y’o.o)2+ gωρβ1(y’o.o)3:                 (32) 
 
y”0,1 + v2,1y0,1 = g · γ2v2,1ε1y’o.o cos2τ - v2,1Ĥ2β1y’o.o + γ2Psinτ  
 
γ1Qcosτ ; y”1,0 + v3,1y1,0 = 0  
 
y”1,0 + v3,1y1,0  = - v2,1ε1yo.o sin2τ + Pcosτ – Qsinτ + v3,1Ğ 

 
Assuming the solution of the first equation of the system (32) in the form 
 
y0,0  = a1cosτ + b1sinτ                                                       (33) 
 
We obtain the following from the second equation  
 
 

y”1,0 + y1,0 =       - gẍ1vo +gωρ(v’o)+  
3

2
 gωρν’oβ1 (a1 + b1) + cosτ [-a1,0a1+ g×̈β1b1 – 3gωρ(ν’0)2 β1b1 – 

3

4
  gωρ β1b1  

      

+    
3

4
 gωρ β1b1a1 + sinτ[ - a1,0b1 – g×̈β1a1 + 3gωρ(ν’0)2 β1a1      +    

3

4
  gωρβ1b1a1 + 

3

4
 gωρβ1a1 ]+  

3

4
 gωβν’oβ1 (b1 + a1) + 

cos2τ 

+ 3gωρν’oβ1a1b1sin2τ + cos3τ[-
1

4
 gωρβ1b1 + 

3

4
 β1b1a1]+ sin3τ(-

1

4
 gωρβ1a1 + 

3

4
 gωρβ1b1a1)    (34) 

From the condition of periodicity we obtain two algebraic equations   
 

- a1,0a1 + (g×̈1β1 - 3gωρ(ν’0)2 β1 -  
3

4
  gωρβ1A1)b1 = 0 

 

–  (g×̈1β1 - 3gωρ(ν’0)2 β1 -  
3

4
 )gωρβ1A1)a1 - a1,0b1 = 0                                               (35) 

 
Where  
 A1 = a1 + b1 

 
For the non-zero a1 and b1 the following relation must occur  

 – a1,0 g×̈1β1 - 3gωρ(ν’0)2 β1 –  
3

4
  gωρβ1A1 = 0                                 (36) 

 – (g×̈1β1 - 3gωρ(ν’0)2 β1 –  
3

4
  gωρβ1A1 – a1,0 

 
Thence  

– a1,0 g×̈1β1 - 3gωρ(ν’0)2 β1 –  
3

4
  gωρβ1A1 = 0                                  (37) 

 
 
The only real solution of (37) is  
a1,0 = 0 
 

A1 = 
×−3𝑔ω𝜌(𝜈’0)2 

3

4
ω𝜌β1

                                     (38) 

The following function is the solution is (34) 
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y1,0 =       – gẍ1vo +gωρ(v’o)3 +  
3

2
 gωρν’oβ1A1 + 

1

2
 gωρν’oβ1(b1 + a1) + cos2τ + gωρν’oβ1a1b1sin2τ + (

1

32
gωρβ1b1  

+ 
3

32
 gωρβ1b1a1) · cos3τ + (

1

32
gωρβ1a1                      (39) 

 

+ 
3

32
 gωρβ1b1a1) · sin3τ 

 
The solution omits the general integral of the homogenous equation by associating it to yo,o. 
When substituting (33) in the fourth and sixth equation of the equation system (32), after transformations, we 
obtain  

 
y"1,0 + v2,1y1,0 = v2,1      – v2,1g×̈2v0” 
 

+ gωρ2,1 (v”o)3 +  
3

2
 v2,1gωρν”oβ1A1  

 
+ cosτ [v2,1g×̈2β1b1 – 3gωρv2,1 

 

(v”o)2β1b1 +  
3

4
 gωρβ1A1b1] + sinτ [–v2,1g×̈2β1a1  

 
+ 3gωρv2,1(v”o)2β1a1  
 

+  
3

4
 gωρβ1A1a1] + 

3

2
 v2,1gωρν” 

 
β1(b1–a1)cos2τ +3 v2,1gωρν”β1a1–b1 
 

sin2τ + (– 
1

4
 gωρβ1b1+ 

1

2
 gωρβ1b1a1) 

 

cos3τ + (– 
1

4
 gωρβ1a1+ 

1

2
 gωρβ1b1a1) sin2τ  (40) 

 
y"1,0 + v3,1y1,0 = 0      (41) 
 
 
 

The following functions are the particular solutions of the above equations:  
y1,0 =      ×̈2v”+gωρv2,1(v”o)3 

 

+ 
   3

2
     gωρv”oβ1A1 + 

 1

𝑣    –1
  

 
[v2,1g×̈2β1 - 3gωρv2,1(v”o)2β1 
 

– 
3

4
 gωρβ1A1]b1cosτ+ 

 1

𝑣    –1
  

 
[– v2,1g×̈2β1a1 + 3gωρv2,1(v”o)2 

 

β1a1+ 
3

4
 gωρβ1A1a1[sinτ+ 

3𝑣

2(𝑣    – 4)
 

 
 

2 2 3 3 3 

3 3 

3 2 

g 

p 
2 

2 

(2) 2 (2) 2 2 

3 2 2 

2 

3 2 

2 

3 2 

0 

2 2 2 
0 

2 

3 3 3 
2 

2 3 3 3 

2 (3) 
(3) 

(2) 0 g 

p 
2 

2 

v2,1 

2 2 

2,1 
2 

2 

2,1 
2 

3 2 

2 

2,1 
2 

2,1 3 2 

2 
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gωρv”oβ1a1b1sin2τ + 
 1

𝑣    – 𝑔
 

 

(– 
1

4
 gωρβ1a1+ 

3

4
 gωρβ1b1a1) cos3τ   (42) 

 
 1

𝑣    – 𝑔
 (– 

1

4
 gωρβ1a1+ 

3

4
 gωρβ1b1a1)sin3τ  

And  
y1,0 = 0       (43) 
 

By means of substituting (39) in the third equation of the system (32), we shall obtain  
 

y”0,1 + y0,1 = (a0,1a1+ 
1

2
 γ1ε1a1 – Ĥ1β1b1 + γ1Q) 

 

cosτ + (a0,1b1+ 
1

2
 γ1ε1b1 + Ĥ1β1a1 + γ1P)   (44) 

 

sinτ + 
1

2
 γ1ε1a1cos3τ + 

1

2
 γ1ε1a1sin3τ  

 
we shall avoid terms unrestrictedly growing in time in its solution if the following equations are fulfilled.  

 

(a0,1– 
1

2
 γ1ε1)a1 + Ĥ1β1b1 = γ1Q) 

 

– Ĥ1β1a1 + (a0,1– 
1

2
 γ1ε1)b1 = γ1P      (45)  

 
 
 
For the case of P = Q, after transformations, we obtain the following from (45) 

a0,1 =   
𝑃

𝐴
γ +

1

4
γ ε  –  Ĥ 𝛽 ±   

𝑃

𝐴
 γ  + γ ε 

𝑃

𝐴
 – 2Ĥ β 

𝑃

𝐴
 γ ε 

 
The particular solution of (44) is  
 

y0,1 = – 
1

16
 γ1ε1(a1cos3τ + b1sin3τ)   (47) 

 
Taking (33) into consideration in the fifth and seventh equation of the system (32) we find the particular 
solutions 

 

y0,1 =  
1

𝑣    –1
 (

1

2
v2,1γ1ε1a1 – v2,1Ĥ2β1b1 + γ2Q)cosτ  

 

+  
1

𝑣    –1
 (

1

2
v2,1γ1ε1b1 + v2,1Ĥ2β1a1 + γ2P)sinτ + 

𝑣   𝛾  𝜀

2(𝑣    – 9)
  

 

a1cos3τ + 
𝑣   𝛾  𝜀

2(𝑣    – 9)
 b1sin3τ 

 

y0,1 = Ğ + 
1

𝑣   – 1
 (– 

1

2
v3,1ε1b1 + P)cosτ   

 

2,1 
2 

3 2 

2,1 

3 3 3 2 

3 

(1) 1 

2 

2 

1 
1 1 1 1 
2 2 2 2 

1 
1 1 1 

1 

1 1 

4 
2 4 

2 

2 

2 

2 

3 
1 1 

(1) 

2 

2,1 
2 

2,1 
2 

2,1 
2 

3,1 
2 

2 

2,1 
2 

2,1 
2 

2 

1 

1 

2,1 
2 

2 

(3) 
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+ 
1

𝑣   – 1
 (

1

2
v3,1ε1a1 + Q)sinτ +

𝑣   𝜀

2(𝑣    – 9)
      (49) 

 

b1cos3τ + 
𝑣   𝜀

2(𝑣    – 9)
 a1sin3τ 

 
We have thus determined the particular terms of the series (27) and (28), limiting the calculations to the first 
approximation. 
Let us now concentrate on the analysis of the case of ω≅p2. The solutions will be sought, as has been done 
previously, in the form of the series (27) and (28) for i = 2. From (28) we obtain  

λ2 = 1 + ε
𝑎    

𝑎   
 + μ

𝑎    

2
 + …      (50) 

 
Let us denote that  
λ1 = v1,2 λ2 
λ3 = v3,2 λ2 

 

where v1,2 = 
𝑝

𝑝
     (51) 

 

 v3,2 = 
𝑝

𝑝
 

and v1,2 and v3,2 are not integers.  
 
 
Analogously to (30), we have  
 
y0,0(τ) = y0,0 = 0     (52) 
 

Substituting (27) in (26), with (50, (51) and (52) taken into account, after equating to zero the coefficients at the 
same powers of μ and ε, we obtain  

y"1,0 + v1,2 y1,0 = 
𝑔

𝑝
 – g×̈v  v’0 – g×̈v1,2   

 
β2y’0,0 + gωρv2,1(v’o)3 + 3gωρβ2v2,1 

 
(v’o)2 y’0,0 + 3gωρβ2v’o(y’0,0)2 + gωρβ2(y’0,0)3  
 
y"1,0 + v1,2 y1,0 = – γ1v1,2εy0,0cos2τ + v1,2   
 
Ĥ1β2y’0,0 + β1Psinτ + γ1Qcosτ ; 
 
y"1,0 + y1,0 = 0 ; 
 

y"1,0 + y1,0 = – α1,0y0,0 + 
𝑔

𝑝
 – gẍ2v”o 

 
– gẍ2β2y”o,o + gωρ(v”o)3+ 3gωρ(v”o)3β2y’o,o 
 
+3gωρv”oβ2(y’o,o)2 + gωρβ2(y’o,o)2 ;    (53)  
 
y"1,0 + y1,0 = – α1,0y0,0 + γ2ε2 y0,0cos2τ  
 

3,1 
2 

2 

1 3,1 
2 

3,1 
2 

1,0 

1,0 

1,0 
2 2 2 

2 2 2 

2 

2 

1 

3 

(3) (1) 

(1) 

(1) 2 

2 

2 

2 

3 (2) 2 

(2) 2 (2) 3 (2) 

(1) 2 (1) 2 (2) 

(2) 

(2) (2) 

(2) (2) (2) 

2 

2 

(2) (2) 

(2) 2 3 (2) 

(2) (2) (2) (2) 

(2) 
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+ Ĥ2β2y’0,0 + γ2Psinτ + γ2Qcosτ 
 
y"1,0 + v3,2y1,0 = 0; 
 
y"1,0 + v3,2y1,0 = v3,ε2y0,0sin2τ  

 

+ Pcosτ – Qsinτ + v3,2Ğ 
 

After substituting the following in the fourth equation of the system (53) 
 
yo,o = a2cosτ + b2sinτ       (54)   
 

and using the trigonometric relations, we obtain  
 

y"1,0 + y1,0 = 
𝑔

𝑝
 – gẍ2v”o + gωρ(v”o)3 

 
 

+ 
3

2
 gωρ(v”o)2 (a2 + b2) + (a1,0a2 – gẍ2β2b2 

+ 3gωρ(v”o)2β1b1 + 
3

4
 gωρβ2b2 

 

+ 
3

4
 gωρβ2b2a2)cosτ + (– a1,0b2 

 
+ gẍ2β2a2 – 3gωρ(v”o)2β2a2 

 

+ 
3

4
 gωρβ2b2a2 –  

3

4
 gωρβ2a2)sinτ 

 

+ 
3

2
 gωρv”oβ2(b2 + a2)cos2τ 

 

+ 3gωρv”o β2a2b2sin2τ + 
1

4
 

 

+ 
1

4
(a2 + 3b2)gωρβ2a2sin3τ     (55) 

 
From the condition of periodicity of the solution we get 

– a1,0a2 + (– gẍ2β2 + 3gωρ(v”o)β2 + 3gωρβ2A2)b2 = 0 
 

(gx ̈2β2 – 3gωρ(v”o)2β2 – 
3

4
 gωρβ2A2)a2 

 
– a1,0b2 = 0                 (56) 
 
Where A2 = a2 = b2 

 
For the non – zero a2 and b2 the main determinant of the equation system (56) must equal zero. From this 
condition we obtain 

a1,0 = 0 
 

2 

2 

(2) 

(2) (2) 

3 

2 

2 

2 

3 

2 2 

3 2 

3 2 3 2 

2 2 2 

2 

2 2 3 

2 3 

2 3 

2 2 2 

2 
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A2 = 
× ̈ –3gω𝜌(𝑣”𝑜)

3

4
𝜔𝑝𝛽

      (57) 

 
The particular solution of the Eq. (55) is  
 

y1,0 = 
𝑔

𝑝
 – gẍ2v”o + gωρ(v”o)3 + 

3

2
 gωρv”oβ2A2 

 
 
 
 

+ 
3

2
 gωρv”oβ2(b2 + a2) · cos2τ 

 

+ gωρv”o β2a2b2sin2τ + 
1

32
 (3a2 + b2)gωρβ2b2 

 

Cos3τ + 
1

32
 (3b2 + a2)gωρβ2a2sin3τ                             (58) 

 
Making use of (54) in the first and sixth equation of the system (53) we obtain their particular integrals  

 

y1,0 = 
𝑔

𝑝
 – gẍ2v”o – gωρv’1,2(v’o)3  

 

+ 
3

2𝑣   
 gωρv’oβ2A2 + 

1

𝑣    –1 
 

 
– (– gẍ1v1,2β2 – 3gωρβ2v21,2(v’o)2   
 

+ 
3

2
 gωρβ2A2)b2cosτ + 

1

𝑣    –1 
 

 
 (gx1v1,2β2 – 3gωρβ2v21,2(v’o)2   
 

+ 
3

4
 gωρβ2A2)a2sinτ + 

3𝑣

2(𝑣    – 1) 
 gωρβ2 

 

v’o(b2 + a2)cosτ + 
3𝑣

2(𝑣    – 4) 
 gωρβ2v’oa2b2 

 

sin2τ · 
1

4
 (b2 + 3a2) 

𝑔𝜔𝜌𝛽

2(𝑣    – 9) 
  

 

b2cos3τ + 
1

4
 (a2 + 3b2) 

𝑔𝜔𝜌𝛽

2(𝑣    – 9) 
 sin3τ              (59) 

 
and  
 
y1,0 = 0                  (60) 
 

The substitution of (54) in the fifth equation of the system (53) gives  
 

y0,1 + y0,1 = (– a0,1a2 – 
1

2
 γ2ε2a2 + Ĥ2β2b2 + γ2Q) 

 

2 2 
(2) 

2 

2 2 

2 2 2 3 

2 2 

2 

2 

2 2 

2 
2 

2 

2 

(2) 

2 2 

1,2 1,2 
2 

2 
2 

3 

2 
1,2 

2 3 

2 

1,2 

1,2 

2 

1,2 

1,2 

2 

2 

2 
3 

1,2 

2 
1,2 

2 
3 

(3) 
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cosτ + (– a0,1b2 – 
1

2
 γ2ε2a2 + Ĥ2β2a2 + γ2P)  (61) 

 

sinτ + 
1

2
 γ2ε2a2cos3τ – 

1

2
 γ2ε2b2sin3τ 

 
The following is obtained from the condition of periodicity after transformations and after assuming that P = 
Q. 

 

a0,1 + 2a2(Ĥ2 β2 – 
1

4
 γ ε  – 

𝑃

𝐴
 γ2) 

 

+ (Ĥ2 β2 – 
1

4
 γ ε )2 + 

1

2
 γ ε  

𝑃   

𝐴
  

– 2γ β2Ĥ2 
𝑃    

𝐴
 (Ĥ2 β2 – 

1

4
 γ ε )2 = 0    (62) 

 
Thence  

a0,1 =   
𝑃

𝐴
γ +

1

4
γ ε  –  Ĥ 𝛽 ±   

𝑃

𝐴
 γ  + γ ε 

𝑃

𝐴
 – 2Ĥ β 

𝑃

𝐴
 γ ε (63) 

 
y0,1 = γ2ε2(a2cos3τ + b2sin3τ)     (64) 
 

on the other hand, after substituting (54) in the second and seventh equation of (53), we shall find the 
particular solutions 

 

y0,1 =  
1

𝑣    –1
 (

1

2
v2,1γ1ε2a2 – v2,1Ĥ1β2b2 + γ1Q)cosτ  

 

+  
1

𝑣    –1
 (

1

2
v2,1γ1ε2b2 – v2,1Ĥ1β2a2 + γ1P)sinτ + 

𝑣   𝛾  𝜀

2(𝑣    – 9)
  

 

a1cos3τ – 
𝑣   𝛾  𝜀

2(𝑣    – 9)
 b2sin3τ       (65) 

 

y0,1 = Ğ + 
1

𝑣   – 1
 ( 

1

2
v3,2ε2b2 + P)cosτ   

 

+ 
1

𝑣   – 1
 (

1

2
v3,2ε2a2 + Q)sinτ +

𝑣   𝜀

2(𝑣    – 9)
       (66) 

 

b1cos3τ – 
𝑣   𝜀

2(𝑣    – 9)
 a2sin3τ 

 
Finally, let us consider the case of ω≅p3. Periodic solutions are possible for particular value of the parameter λ3. 

 
 

λ3 ≅ 1 + ε
𝑎    

2 
 + μ

𝑎    

2
 + ε 

𝑎    

2 
      (67) 

 
Let us denote that  
λ1 = v1,3 λ3 
λ2 = v2,3 λ3 

 
where; 

4 
2 2 2 2 2 2 
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 v1,2 = 
𝑝

𝑝
                                (68) 

 v3,2 = 
𝑝

𝑝
 

 
and v1,3 and v2,3 on assumption are not integers. Similarly to the previous considerations, assuming that 
 

y0,0(τ) = y0,0(τ)= 0       (69) 
 

we obtain the following recurrent differential equation system from the equation system (26)  
 

 
 
 
 

y"1,0 + v1,3 y1,0 = (g + Q1y1,0) [
𝑣     

𝑝
 – v  ẍv’o + ωρν  (ν’o)3] 

 
y"1,0 + v1,3 y1,0 = γ1v1,3 y"o,osin2τ + γ1(Psinτ + Qcosτ) 
 
y"2,0 + v1,3 y1,0 = – v1,3a1,0y1,0 + (g + Ω1y0,0) 
 

[
𝑎      

2
 – v  ẍ1a1,0v’o + ν1,3ẍ1(– β1y’1,0 + β2y’1,0 + β2y’1,0 + ωρν21,3)3] 

 

(ν’o)2(
𝑎      

2
v  v’o + β1y’1,0)] 

 

+ Ω1y1,0) [
1 

𝑝
 – v  ẍ1v’o + ωρν  (ν’o)3] 

 
y"2,0 + v1,3 y1,0 = – v1,3a0,1y1,0 + v1,3γ1(ε1y0,1 – ε2y0,1)cos2τ 
 
+ v1,3Ĥ1(β1y’0,1 – β2y’0,1 + v1,3γ1(a0,1y0,0 + y0,1)sin2τ 
 
y"1,1 + v1,3 y1,1= – v1,3(a0,1y1,0 + a1,0y0,1 

 
+ v1,3γ1(ε1y1,0 – ε2y1,0) · cos2τ 
 
– v1,3Ĥ1(β1y1,0 – β2y1,0) + v1,3γ1(a1,0y0,0 + y0,0)sin2τ 
 

+ (g + Ω1y0,0 [
𝑎    

𝑝
 – v  ẍ1v’o + ν1,3ẍ1(– β1y’0,1 + β2y’0,1) + ωρν21,3) 

 

(ν’o)2(ν21,3v’o 
𝑎      

2
  – β1y’0,1 + β2y’0,1 

 
+ Ω1(y0,1 + y0,0cos2τ) 
 

( 
1 

𝑝
 – v  ẍ1v’o+ωρν  (ν’o)3);                                     (70) 

 

y"1,0 + v1,3 y1,0 = (g + Ω1y0,0) [
𝑣     

𝑝
 – v  ẍ”o + ωρν  (ν”o)3]; 

 
y"0,1 + v2,3 y1,0 = v2,3γ2y"o,osin2τ + γ2(Psinτ + Qcosτ); 

3 
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(1) (1) 
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y"2,0 + v2,3 y1,0 = – v2,3a1,0y1,0 + (g + Ω1y0,0) 
 

[
𝑎      

𝑝
 – v  ẍ2v’0a1,0 + ν1,2ẍ1(– β1y’1,0 + β2y’1,0 + ωρν22,3(ν”o)3 

 

  (
𝑎      

2
v  v”o + – β1y’1,0 + β1y’1,0)] 

 

+ Ω1y1,0  [
1 

𝑝
 – v  ẍ1v”o + ωρν  (ν”o)3] 

 
y"0,2 + v2,3 y0,2 = – v2,3a0,1y1,0 + v2,3γ2(ε1y0,1 – ε2y0,1)cos2τ 

           + v1,3Ĥ2(β1y’1,0 – β2y’0,1 + v2,3γ1(a0,1y0,0 + y0,1)sin2τ 
 
y"1,1 + v2,3 y1,1= – v2,3(a0,1y1,0 + a1,0y0,1 

 
+ v2,3γ2(ε1y1,0 – ε2y1,0) cos2τ 
 
– v2,3Ĥ2(β1y1,0 – β2y1,0) + v2,3γ2(a1,0y0,0 + y0,0)sin2τ 
 

(g + Ω1y0,0) · [
𝑎      

𝑝
  

 
– v  ẍ2a1,0v’0 – ν2,3ẍ2(ν”o)2 
 

  (v  v”o 
𝑎      

2
 – β1y’0,1 + β2y’0,0)] 

 
+ Ω1(y0,1 + – y0,0cos2τ) 
 

[
1 

𝑝
 – v  ẍ2v”o + ωρν  (ν”o)3] 

 
y"0,0 + y0,0 = 0 
 
y"1,3 + y1,0 = – a0,0y0,0  
 
cos2τ + Pcosτ – Qsinτ + Ğ 
 
y"2,0 + y2,0 = – a1,0y1,0 – a2,0y0,0 

 
y"0,2 + y0,2 = – a0,1y0,1 – a0,2y0,0 

 
– ε1y0,1sin2τ + ε2y0,1sin2τ + a0,1y0,0cos2τ 
 
 
+ y0,1cos2τ + a0,1Ğ 
 
y"1,1 + y1,1 = – a0,1s0,0 – a0,1y0,1 

 
a0,1y1,0 – ε1y1,0 – ε1y1,0sin2τ  
 
+ a0,1y0,0cos2τ + y0,1cos2τ + a0,1Ğ 

1,0 2 
1,3 
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(3) 

(3) (3) (1) 

(3) 

(3) (3) (3) (3) 

(3) 



 
Lawrence and Paul 270 

 
 
y"1,1 + y1,1 = – a1,1s0,0 – a1,0y0,1 

 
– a0,1y1,0 – ε1y1,0 sin2τ +ε2y1,0 

 
Sin2τ + a1,0y0,0cos2τ + y1,0cos2τ + a1,0Ğ 
 

After substituting   
 
y0,0 = acosτ + b3sinτ      (71) 

 

in the twelfth equation of the system (70) we get  
 
y”0,0 + y”1,0 = – a1,0(a3cosτ + b3sinτ)   (72) 
 

For the non-zero a3 and b3 the following results from the condition of periodicity  
 a1,0 = 0       (73) 

Thence   
 
y1,0 = 0       (74) 
 

Making use of (71) in the first and sixth equation of the system (70), we shall obtain their particular solutions  
 
 

y1,0 = [
𝑔   

𝑣     
 + 

𝛺   

𝑣   −1 
 (a3cosτ + b3sinτ)] 

 

         [
𝑣  

𝑝      
 – v   ẍ1vo + ωρν  (ν’o)3)]    (75) 

 

y1,0 = [
𝑔   

𝑣     
 + 

𝛺   

𝑣   −1 
 (a3cosτ + b3sinτ)] 

 

         [
𝑣  

𝑝      
 – v   ẍ2v”o + ωρν  (ν”o)3)]   (76) 

 
After substituting (71) in the thirteenth equation of the system (70), we have 

 

Y”0,1 + y0,1 = Ğ + (– a1,0 a3 + 
1

2
 a3 + P) cosτ 

 

+ (– a1,0 b3 – 
1

2
 b3 – Q) sinτ + 

1

2
 (a3cos3τ + b3sin3τ)  (77) 

 
The condition of periodicity gives 

 

a0,1 =  
1

2
 + 

𝑃

𝑎
 

 

a0,1 =  
1

2
 + 

𝑄

𝑏
        (78) 

 
The particular solution of this equation is the following:  

 

(3) 

(3) (1) (2) 

(3) 

(3) 

(3) (3) 

(3) 

(1) 
2 

1,3 1,3 
2 

2 

2 

1 

1,3 
2 

1,3 

2 

2 
2,2 2,2 

2 

2 

2 

2,3 
2 

1,3 

2 

1 

1 

2 

1,3 
2 

1,3 
2 

3 

3 

(2) 

(2) 

(1) 

(3) 3 
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y0,1 = Ğ – 
1

16
 (a3cos3τ + b3sin3τ)                 (79) 

 
When substituting (71) in the second and seventh equation of the system (70), we obtain their particular 
integrals:  

 
 

y0,1 =  
𝛾

𝑣   −1 
 (

𝜈   

   2     
b3 + Q)cosτ 

 

 =  
𝛾

𝑣   −1 
 (

𝜈   

   2     
a3 + P)sinτ + 

𝜈      𝛾   

   2(𝜈    –9 ) 
  

 
(a3sin3τ – b3cos3τ)                    (80) 
 

y0,1 =  
𝛾

𝑣   −1 
 (

𝜈   

   2     
b3 + Q)cosτ 

 

 =  
𝛾

𝑣   −1 
 (

𝜈   

   2     
a3 + P)sinτ + 

𝜈      𝛾   

   2(𝜈    –9 ) 
  

 
(a3sin3τ – b3cos3τ)      (81) 

 
After substitution (71) and (73) in the fourteenth equation of the system (70), we obtain the following from the 
condition of the existence of periodic solutions  

 a2,0 = 0        (82) 
Analogously, taking (71), (79), (80), (81) into account in the fifteenth equation of the system (70), we shall 
obtain equation which, after transformations, will assume the form  

   

  a0,2 =  
𝛾  𝜀   𝜈     

   4    
 (
𝜈       –1 

    2     
 + 

1  

  𝜈    – 9  
)  

 

+  
𝛾  𝜀   𝜈     

   4    
 · (

1 

  𝜈    – 1    
 + 

1  

  𝜈    – 9  
) 

 
1

2
 a0,2 – 

1

32
 – 

𝑃

𝑎
 (

 𝜀   𝛾     

  2(𝜈     –1)  
 – 

 𝜀   𝛾     

  2(𝜈     –1)  
)   (83) 

 

a0,2 =  
𝛾  𝜀   𝜈     

   4    
 (

1 

 𝜈    −1 
 + 

1  

  𝜈    – 9  
)  

 

+  
𝛾  𝜀   𝜈     

   4    
 · (

1 

 𝜈    −1 
 + 

1  

  𝜈    – 1  
) 

 

– 
1

2
 a0,2 – 

1

32
 – 

𝑄

𝑏
 (

 𝜀   𝛾     

  2(𝜈     –1)  
 – 

 𝜀   𝛾     

  2(𝜈     –1)  
)   (84) 

 
The following algebraic equation system will be obtained from the condition of periodicity of the solutions of 
the equation system (70) after substituting (71), (74), (75), (76) and (79) in its sixteenth equation:  

 

– a1,1a3 – 
 𝜀   𝑐   𝛺   

  2(𝜈     –1)  
 – 

 𝜀   𝑐   𝛺   

  2(𝜈     –1)  
 b3 = 0 

 

– a1,1b3 – 
 𝜀   𝑐  𝛺   

  2(𝜈     –1)  
 – 

 𝜀  𝑐   𝛺   

  2(𝜈     –1)  
 a3 = 0    (85) 

 

1,3 
2 

1 

1,3 
2 

2,3 
2 

2 

1 

1,3 
2 

1,3 
2 

1,3 
2 

1 

1,3 
2 

(1) 

(2) 2,3 
2 

2 

2,3 
2 

2,3 
2 2 2,3 

2 
2,3 
2 

1 

1,3 
2 

1,3 
2 

1 

1,3 
2 

(1) 

1,3 
2 

1 1 

2,3 
2 

2,3 
2 

(1) 
1 

3 1,3 
2 

1 

2,3 
2 

2 2 

1,3 
2 

2,3 
2 1,3 

2 1 1 

2 2 2,3 
2 

2,3 
2 

2,3 
2 

(2) 

3 

1 

1,3 
2 

1 

2,3 
2 

2 2 

1,3 
2 2,3 

2 

1 1 1 

2 

2 2 2 

2 

1,3 
2 

2,3 
2 

1 1 1 2 2 2 

2 
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Where: 

C1: 
𝜈    

𝑃
 – ν  ×̈1v’o + ωρν  (v’o)3 

 

C1: 
𝜈    

𝑃
 – ν  ×̈1v”o + ωρν  (v’o)3 

 
 

From the condition of a non-zero solution of the equation system (85) in relation to a3 and b3, we obtain  

a1,1 = ± [ 
𝛺  

2
 (

 𝜀   𝑐   

  𝜈     –1 
 – 

 𝜀   𝑐  

  𝜈     –1 
)]   (86) 

 
The coefficients of the sought series (67) are determined by the expressions (73), (78), (83), (84) and (86).  
 
 
 
 
RESULTS 
 
Calculation Examples 
 
The analytically obtained results of parametric instability zones are to illustrate the influence of particular parameters of 
the system on their magnitude and position. The physical parameters of the system are given in the form in which they 
occur in the differential Eg. (12).  

The influence of unbalance μP, damping (μH1), and the shape of friction characteristics (α/β) on the magnitude of the 
parametric instability zones for p1 and p2, for the following data: Ω

2
 = 900s

-2
, Ω1

2
 = 480s

-2
, ω1

2
 = 4800s

-2
, g = μG = 9,81ms

-

2
, νn = 0,4ms

-1
, ε = 0,2. On the basis of (14), p1 = 73, 32s

-1
 p2 =28, 35s

-1
, and p3 = 69,28s

-2
 have been obtained. The 

adequate coefficients assume the form γ1 = 0,833, γ2 = 0, 12, β1 = 0,126, β2 = – 0,674, ε1 = 1,176, ε2 = 0,376. (While, α/β = 
α/ρ). 

The parameter instability zones (for p1) and 5 (for p2) expand with the increase of unbalance μP, while, depending on 
the value of the quotient α/β, this tendency can have different intensity. In the case of α/β = 0,5m

2
s

2
 the doubling of 

unbalance has caused the expansion of the instability to double for zones for p1 as well as for p2. For α/β = 1m
2
s

-2
 the 

increase a tripling of unbalance brings about a comparatively small expansion of the instability zones for p1, while for p2 
the expansion is still almost doubled. In the case of large unbalance of the rotor, the changes of the quotient α/β do not 
influence the magnitude of the parametric instability zones. The influence of damping on the magnitude of the instability 
zones corresponding to the frequencies p1 and p2 is also very different. Small damping (μH1 = 0,05s

-1
) causes 

considerable shift of the zone for p2 in the direction of the growing value of modulation depth μ(μ ≥0,15). In the case of 
double increase of damping the zone will not occur for μ ≤ 0, 3.  

The magnitude and position of the instability zones for p1 are not sensitive to changes of the damping coefficient. In the 
case of μH1 = 10s

-1
 the pre open zone of frequency p1 exists for ≥ 0,034. After a doubled increase of damping, when μH1 

= 20s
-1

, the lower border of the occurrence of the zone is shifted to the value of μ = 0, 07.  
The parametric instability zone for p3 depends on the initial conditions of the system’s motion. It has been prepared on 

the assumption that a3 = b3 = 0,01m where a3= y3(0), b3 = y3(0). The calculations, in the case of the resonance coordinate 
y3 have been performed with exactitude up to the second approximation, thence the inclination of the instability zones in 
the direction of the growing values of the parameter λ

2
3. For the first approximation, the zones remains symmetrical in 

relation to the straight line λ
2

3 = 1. As in the cases considered above the increase of unbalance considerably expands the 
instability zone. The changes of the value of the quotient α/β and damping have a negligible influence on the magnitude of 
the zone. Figure 7. Presents the parametric instability zones for various values of the parameters Ω

2
, Ω1

2
 and ω1

2
. For the 

zones denoted by 1 we get Ω
2
 = 14400s

-2
, Ω1

2
 =1920s

-2
, ω1

2
 = 19200s

-2
; for the zones denoted by 2 we have Ω

2
 = 3600s

-

2
, Ω1

2
 =480s

-2
, ω1

2
 = 4800s

-2
 and for the zones denoted by 3: Ω

2
 = 900s

-2
, Ω1

2
 =120s

-2
, ω1

2
 = 1200s

-2
. In all the cases the 

magnitudes of the other parameters are as follows: μH1 = 10s
-1

, ε = 0.2, α/β = 0.5m
2
s

-2
, v0 = 0.4ms

-1
, μP = 0,0015m. 

The growth of the squares of frequencies Ω
2
, Ω1

2
, ω1

2
 (resulting from the increase of rigidity of the elastic elements in the 

system or from the decrease of the values of masses) causes that the instability zones for p1 and p2 expand. For example, 
the increase of the parameters Ω

2
, Ω1

2
 and ω1

2
 by four times brings about an approximately doubles expansion of the 

zones. The instability zone for p3 is not influenced by the frequency changes in the system [Fig. 9(c)]. 
There is influence of the velocity changes of the belt vo on the magnitude of the instability zones for p1 and p2. 

Calculations have been performed for the data denoted by 1, except for the velocity vo, whose value has been changed.  

1,3 
2 

2 

1,3 
2 

1,3 
2 

2 
1 2,3 

2 2,3 
2 

2,3 
2 

2,3 
2 

2 

2 2 

1,3 
2 
1 1 
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In each case the velocity increase of the belt causes the expansion of the instability zones. For vo < 3,3ms

-1
 these 

changes are less evident. The influence of the velocity changes vo on the parametric instability zone p3 is practically 
negligible.  
 
 
CONCLUSION 
 
The paper presents the analysis of a discrete mechanical system with three degrees of freedom, where self excited 
vibrations caused by friction, as well as parametric and forced vibrations occur. The system of ordinary differential 
equations governing the motion of the analyzed system if nonlinear section of the six order. The periodicity of the 
coefficients in the linear section of the equation of motion results from non-identical moments of inertia of the shaft cross 
section of the rotor consisting part of the analyzed system. The non-linearity is introduced into the equations of motion by 
friction between the belt and the rigid mass element where the rotor is placed. Moreover, it is increased by the normal 
reaction changes between the belt and the rotor base resulting from the rotor vibrations. External excitation in the form of 
a periodic function of time is also introduced into the system; the excitation is the effect of the unbalance of the rotor.  

The analysis performed makes it possible to present the following conclusions: 
(1) The method of seeking a solution as the power series of two perturbation parameters μ and ε used in the 
considerations makes it possible to investigate the single resonances of any order for the systems with weak nonlinearity 
and weakly modulated (μ≪1).  

When performing calculations with exactitude up to the second approximation, it turns out that the limits of unstability 
zones incline in the direction of the growing values of the parameter λ

2
3 (Fig. 6). For the first approximation, the limits 

remain symmetrical in relation to the straight line λ
2
3 = 1. 

(2) The parametric instability zones for p1 and p2 expand with the increase of the rotor unbalance. Depending on the 
value of the quotient α/p, this tendency has different intensity. In the case of α/β = 0,5 m

2
s

-2
, a double increase of 

inbalance has brought about a considerable expansion of the instability zones, for p1 as well as for p2. For  α/β = 0,1 m
2
s

-2 

the unbalance which causes a rather small expansion of the instability zone for p1 while for p2 the expansion is still almost 
double. In the case of lack of the rotor unbalance the changes of the quotient α/β do not influence the magnitude of the 
parametric instability zones. The influence of damping on the magnitude of the instability zones corresponding to p1 and 
p2 is also very different. Minimum damping (μH1 = 0,5 m

2
s

-2
) causes considerable shift of the zone for p2 in the direction of 

the growing values of modulation depth (μH1 = 0,5 m
2
s

-2
). The magnitude and position of the instability zones for p1 are 

not so sensitive to the damping coefficient changes. The regularities indicated here are the more clear, the greater is the 
difference between the values of frequency p1 and p2 (i.e. for p1 ≫p2). The increase of unbalance also produces a 
considerable expansion of the instability zone for p3; however the changes of the parameter and of damping have no 
essential influence on the magnitude of the zone.  

The growth of the frequency squares Ω
2
, Ω1

2
 and ω1

2
 causes the expansion of the instability zones for p1 and p2 are 

expanded. This property is noticeable within the range of great velocity (vo > 0,3ms
-1

). The influence of the velocity 
changes vo on the parametric instability zone for p3 is practically negligible. 

(3) For the frequencies p1 and p2, the position of instability zone limits does not depend in the first approximation on the 
initial conditions of the system’s motion. The magnitude of the instability zone limits for p3 depends on them.   
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