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Abstract

The paper presents the analysis of a nonlinear parametric system consisting of a rotor with rectangular
cross—section placed in a rigid self-excited base. The parametric instability zones have identified on
the basis of the method of expanding into a power series in relation to two perturbation parameters
(one connected with parametric excitation, the other with friction coefficient). The influence of the
changes of chosen parameters of the system on the size and instability zones of the first order has
been investigated.
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INTRODUCTION

Friction induced self-excited vibrations and parametric vibrations occur in many physical systems and have been in the
focus of interest for a long time in many works concerning vibrations (Stoker, 2010; Minorsky, 2011; Hayashi, 2011,
Cunningham, 2011). Both kinds of vibrations may be considered as sufficiently known. However, when both excitations
occur simultaneously in one system, the phenomenon is more complex (see for example, Alifov and Frolov; 2012). On the
other hand, this case occurs in technology, because e.g. in the combustion engine, in certain conditions self-excited
vibrations of the piston and parametrically excited vibrations together with forced vibrations are analyzed in this paper. The
parametric excitation and the exciting force come from the rotor with rectangular cross—section, which has in its middle a cylinder-like
mass concentrated eccentrically on it. The rotor is fixed on a base placed on a belt moving at constant velocity. At a certain value of the
belt velocity and the frequency of rotor turns, parametric and self—excited vibrations are created in addition to the forced vibrations.

As the parametric excitation p and the friction coefficient € are small in such in such a system they have been recognized as
perturbation parameters. The methods with one perturbation parameter used to determine the limits of the stability—loss zones are
widely described in the literature, and their extensive presentation is given by Malkin, 2010; Giacaglia, 2010; Lakubovic and Starzinsky,
2013. However, the analytical approach based on introducing of two independent perturbation parameters is rarely used in
mechanics. This paper present a general analytical technique for calculating the limits of stability in the system with self
excited and parametric vibrations and develops authors earlier works (Awrejcewicz, 2010, 2011).

METHOD
The Analyzed System and Equations of Motion
The diagram of the analyzed system is presented in Figure 1. A weightless shaft with rectangular cross—section with a

cylinder—like mass concentrated in its center is supported in the base placed on a belt moving at constant velocity V'o. The
friction coefficient between the belt and the base depends on their relative velocity. The character of this
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Figure 1. Diagram of the analyzed system
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Figure 3. Calculation model of the system

dependence (Figure 2) causes the creation of self-excited vibrations. The effect is described in the basic works on
nonlinear vibrations. On the other hand, considering the non-identical cross—section of the rotor at same values of its
rotational speed, parametric vibrations occur. The vibrations cause the changes of the normal force holding down the
base to the belt in vertical direction, and hence they cause the changes of the friction force. It is assumed that the
vibration of the rotor does not cause the tearing of the base off the belt.

The calculation model of the analyzed system is presented in Figure 3. The equations of motion of the system have the
form;



mX;=-&,kecos@ - nwknsing
my. = Swkesing + nwkycosep + mg

L=~ Mo + a (-Swkecos@o + nuwkysing,) 1)
Where;
X;Ye . Coordinates of the centre of mass of the cylinder,
P : Mass moment of the inertia of a cylinder with mass , in relation to the z” axis of the O” x” y” z” system moving

with translator motion in relation to Oxyz
&w.hw. . Coordinates of the point of puncture by the shaft in the coordinates system o én

o én : Coordinates system whose axes are parallel to the main, central inertia axes of the cross section of the shaft.

ke Ky, . Shaft rigidities in the direction of the axes § and n

Mo : Driving torque reduced by all the resistance torques

AP, : Parameters characterizing the position of the centre of mass of the disk C in relation to the point of puncture by
the shaft.
For thezstate near the steady ones the torque M, is very small. Let
I,» = Mig 2

Where isis the inertia radius, then the third equation of the Equation. (1) will assume the form

o=1-a (-Sukecos got 1wk, singo) ©)

142

As the eccentricity a and the shaft deflection ¢, and n,, are small as compared to the inertia radius, and then the following
can be assumed:
% =0, %=w==const, ¢ =wt 4)

The following geometric dependences result from the Fig 3:

&w = (Xw — X) COSQ - yuSinQ

Ny = (Xw — X) SiNQ - y,,COSQ®

Ye = Yw + @cos(¢ + @o)

Xc = X + asin(e + ¢,) )
where Xy, Yw are the coordinates of the point of puncture by the shaft W in the system Oxy.

In order to write down the equations of motion of the mass M it is necessary to determine the dynamic reactions on the
shaft in its points of support. They are determined from the equations of equilibrium.

X1 + Xz + §ukecosot + nwkysinot =0

Y1 + Y2 + Sukesinot + nwkicoswt =0 (6)

Where Xj, Y1 and Xz, Y2 denote the support reactions on the left and right end of the shaft, respectively.
The rotor reactions on the support are then as follows

Ri=-X1, X2
Ry =- Yl/ Y2 (7)
The equation of motion of a body with mass M, on the assumption that Mg + Ry> 0, has the form

Mx'=-kx - cx -+ Ry + (Mg + R)) p(®),
@ =0V~ X" (8)

The dependence of the friction coefficient on the relative velocity w can be circumscribed with the
polynomial

w = esgn® - a® + Pw3 )



Finally, the equations of motion of the analyzed system, after assuming that x = x1, x» = x2, ¥» = x3, have the
form:

X1 =-x1 [Q2+ Qe+ Q2 + (2 - 2)) cos2mt] - Hx 1 + xa [-(€2% - Q%) + - (Q% - 2;) cos2mt] - x3 (Q% - Q%)) sin2wt +
{g - x2 (Q% - Q%)) sin2wt + - x3[-(€2%
- €2)) + (Q2% - Q2)) cos2mt] + x1 (€% - £22,) sin2wt}. [esin (VoeX 1) - a(vo - X 1) + P(vo - X 1)3] (10)

X5 = x2 02 - @2y + (0% - @%) cos2wt]- x2 [02e- @2y + (0% - ®2;)cos2at]
+ X3 [(0% - @?)sin2wt + a2wsin(wt + @o)

X3 = - x1 (0% - @%;) sin2mt + Xa(w% - @%;) sin2ot + X3[-(0% - W%)) + (@2 - ®2;). cos2wt] + aw2cos(wtf + @o) + g

Where Q2 =k, Q=ke, 2=Xk,

M 2M 2M
H= C, o%=k, o=k,
M 2m 2M

Transformation of the Equations of Motion to the Main Coordinates
Let us introduce the following denotations

2 =% + 2, : Q% = Q2 - Q2
D12=0% + 0% 00 =0k-?;x=a:p=p:H= pH::
e &
acos@o = pP:
asing, =aQ:pG=g (11)
where; p=w%h= % = k¢ - ky is the perturbation parameter.
@0 21 ket ky

After accounting for (11) in the equation system (10), it will assume the form

X1 == %1 Q2 - X1 Q2 (3 + pcos2et) - pHix 1 +%2 Q%(1 + peos2mt) + x3Q%psin2wt + (g - x2 QA psin2wt) +
x1 Q2 psin2mt+x3 Q2(1 - peos2wt) - [sgn (vo - X 1) - X(Vo - X 1) + p(vo - X 1)3] :

X3 = - X102 (1 + pcos2mt) - X2 @(1 + pcos2et)+ xs@2ipsin2mt + p(Psinet + Qcosot) w?

X3 = - x1@2psin2et + X0 psin2et - xs®? (1 - pecos2et) + p(Pcoswt - Qsinwt)w?+ pG (12)

When introducing p = € = 0 into the equation system (12), we obtain a homogeneous linear differential
equation system

X1+ Xq(€2+ Q%) - %04 =0

Xi + @2 (X2 X1) = 0

X3+ w21%3 =0 (13)

When assuming the solution of (13) in the form x; = Aicospt, i = 1,2,3, we find the following frequencies

pio = Y[ Q2+ Q2 + 02 +VQ2+ Q2 + @2)2- 4 Q2] (14)

P = @2

Let us introduce the main coordinates &;, for which at p = € = 0 disjugation of the linear part of the first two
equations of the system (12) will occur. Let us now multiply these equations by &; and &, respectively, and add
the sides. The result will be



X1& + xq (2 + Q%) & - Q%8 + Xo8 +Xwny - Xi0n& = p[-x1Q%cos2etss - Hixa& + §1xQ%cos2mt -
&x3Qsin2mt  + x1w2cos2mt — SXw?icos2mt + §X3m2isin2mt +@28>(Psinot + Qcoswt)] +e &i[g - x2Q2psin2at

+x3072 (1 - peos2mt) + X1 Q4 psin2w®t] - [sgn(vo - X1) - X(vo - X1) + p(vo - X1)3] (15)
By denoting

(€22 +€Q21) G1 - w2y = §02- Q4G + 048 = §02 (16)
We find

(€2+Q2-02) & + 0185 =0

- Q& + (04-02)&%=0 (17)

In order for Equation (17) to be fulfilled for &; and & different from zero, the following dependence must occur.

(2+02-02-02 = 0
L2 @2- 62

hence
@12 = p12 and @22 = p22 (18)
Let & = 1 and & = §2 be denoted for 6; = p; - from the second equation of the system (16) we find

§2-y1 81 (19)
Where
yi= Q%

@2 - P2

Making use of the dependences (16) and (19), the Equation (15) is transformed to the form

X1+ X1 P12+ X5 y1 + X2 p12y1= X1 p12y1cos2et - H1X1 - p12y1Xacos2mt + p12y1%esin2mt + yio2(Psinet + Qcoswt)] +
g[g - x2Qu2psin2mt + %3642 (1 -
peos2mt) + x1€2psin2wt] - [sgn (vo - X1) - X(vVo - X1) + P(vo - X¥1)?] (20)

Analogously, for 0, = P, the following are denoted; & =&”1and "> =", while

&=yt 21

where;
V2= Q2
m12 - p22

Taking (16) and (21) into account in (15), the equation will assume the form

X1+ X1 P22+ X3 ya + %o P22y2= p[X1y1p22c0s20t - HiX] - X2y2022c08200t +

[X3y2p22sin2mt + y202(Psinot + Qcoswt)] + e[g - X2u2psin2mt + X312 (1 - peos2at) + x18212psin2wt] - [sgn (v, - x
1) - X(00 - x1) + B(00 - X1 (22)

Let us denote



Y1 = X1+ y1%X;2
Y2 = X1+ y2%X; (23)

The reserve dependences can be determined from the Equation (23)

X1 = Buy1 - Pay2 24
2= QY1 -12)
Where; 1= y2 , B2=V2 , ¢ =1

Y2- Y1 Y2 -1 Y2-Y1

Let us additionally assume that x3 =y

Taking (23) and (24) into account in (22), (20) and (12) we shall obtain the following differential equation system

Y1+ P12 y1 = plpa? yi(Pay - Payz)cos2ot- Hi(Pryr - Bay2) - pa2 yi¥ (y1 - y2) cos2at + pi2 yi yssin2et + @2y: (Psinwt +
Qcoswt)]+ e[g - p C12)W (i1 - 12) cos2amt + p L212 (Pay1 - P2y2) sin2mt + Qi2y3(g - peos2mt)][sgn (v - P2y + Pay2) -

(0o - Payt Paya) + p (0o - Bay1 + Boyo’l: Y2 + P22 12 = ulp2? va(Pry ~Pay2) cos2at- Fh (Brys - Boya) + p2? v2F (11 - 12)
cos2mt+ p2? 12 yssin2et + w2y (Psinat + Qcosat)]+ e[g - p 12)W (i1 - y2)sin2eot + p&12(Pry: - B

2y2) sin2mt + 12y5 (1 - pecos2mt)][sgn (vo - Pay1 + Pay2) - x(Vo - Payit Pay2) + p(ve - Pry1 + P2y2)?] (25)

Y3+ pa? y3 = pl- pa?(Pryr - Pay2)sin2et + p2¥ (1 - y2)sin2wt + ps?
y3cos2mt + w2(Pcoswt + Qsinwt) + G]

After introducing the dimensionless time t = wt, we obtain

1+ M2 y1 = p[M2yi(erys - e2y2)cos2t - MHi(Bry’s - Pay’2) + M2 yasin2t
+ y1(Psint + Qcost)] + e[g + pQi2(ery1 - €2y2)sin2t + Qq2y3(1 - pcos2t)] -

sgn(v E‘J[%m)y 1- Pawy’2) +-MX1(M0% - Pry1 + B2y 2)+ @op(Mv’o - Pry’1 +

Bay 2] ¥2 + A2 y2 = p[\o2ya(eryi - €22)cos2t- MaFha(B1y/'1 - Bay’2) + Y22
y3sin2t + ya2(Psint + Qcost)] + e[g + uQi2(e1y1 - £2y2)sin2t + 12y3(1 -
pcos2t)] -

2
sgn(vc?“-z Bray’1 - Pawy2) + - MaXa(Mav”o - Bry 1 + B2y 2)
2

+ P00 - Pyt + Bay’2)® V3 + A5 3 = [ - Ns2(eay1 — e2y2)sin2t+ As2y3c082t + Peost + Qsint + \2G]

Where;
. o= . 2 = 4 1 =
Y1 ; }\1 ayl 1 1 Ié 3
p ()

a=Px-¢ k=12
X=X
P
. . G , H]_ B Vo . Vo H2
G= ,'H1=—2('vO : = D
B B 1 P, R




Zones of instability of the first order

The procedure of solving the equation system (26) consists in assuming two perturbation parameters p and € connected
with parameter excitation and friction, respectively.
The sought periodic solutions of y; (1) are presented in the form of a double power series:

Yi (T) =Yoo + Pyo1 + p2yo2 + ...

(') (') (')
+ (o, A }1}}?1 Sr)}l 210+ 27)

Where: yi1k1 = 0,(I1),2, ... must fulfill the condition of periodicity. Periodic solutions are only possible for certain
values of the parameters A; presented in the form of analogous series:

Ni=mn2+poo1 + pdos + ...+ e(ao + Har1 T P2+ L)+ (28)

Where: a1 k,1 = 0,1,2 ... are the unknown coefficients, which are determined from the cond|t|on of periodicity, avoiding in
the solution terms unrestrictedly growing in time. For the resonance of the first order n’> = 1 we shall determine the
parametric instability zones, for which the frequency of parameter modulation fulfills, consecutively, the dependences
w=p;, W=pP,, and w=p;. In series (27) and (28) for w=p; and w=p, we shall limit our considerations to the first powers of
the small parameters y and €. On the other hand, for w=p; we shall limit ourselves in the calculations to the second
approximation. In all the three cases we shall assume that sgn(v, — B1wy’s - Bowy’) = 1

Let
gy,
2 2.2
A3 =v3,1M (29)
where:
1= P2
P1
V31 = Ps3
P1
and let us assume that 121 and v31 are not integers. Let us first consider the case w=p; assuming that
YoZo(T) = Yoo(T) = 0 (30)
@ ®

The assumption is accounted for by a weak conjugation of the Equation (26) and e«1 and p«1. For 1 = ¢ = 0 we shall
obtain a disjugate system of three linear differential equations. For the resonance coordinate y; , the magnitude of
oscillation of the other two main coordinates should be of the order of the small parameters 1 and e.

Let us substitute the series (27) and (28) in the differential Equation (26) taking into consideration the dependences (29)
and (30) and the expansion.

ML+ pR 4 e L g (31)

After equation to zero the coefficients at the same powers € and 11, we obtain a system of recurrent differential equations

y”o.o + Yoo = 0



Yoot Yoo =-A1,0Y00 + --8X106 + gXiP1y 00 + §0P(Vo)? - 3gW0P(V0)2P1Y 0.0t 380PTP1(Y 0.0)2 + 8OPP1(Y 0.0)% Y 00 + Yoo = - A0,1Y0.0
* Yi€1 Yoo

082t - HiP1y'oo + yiPsint + y1Qcost ;y"10 + v21y10 = g * 21/ Pagua1 Xiv”ot gv21 KBy o0 + gopv21(v”e)? +
3gwpv21B1(v”0)? Bry oo+ 3gwpv210”oPr(y o)+ gRPPIY 00 @ (32)

Y701+ V2101 = § * Y2021€1Y 00 COS2T - V21 H2P1y 00 + Y2PsinT
y1Qcost; ¥ 1,0 + v31y10= 0
]/”1,0 + U31Y1,0 = - U2,1€1Yo.0 sin2t + Pcost - QSil’lT + ’U3,1C
Assuming the solution of the first equation of the system (32) in the form
@ .
Yoo = @cOST + bisint (33)

We obtain the following from the second equation
9
p12
yiotyo= - gxiw, +gwp(v'o)* % gopv'oPi (a1 + by) + cost [-ar om+ gXPrbr — 3gwp(v'o)? Prbs —% 8wp Pubr

+ %gmp Bibiay + sint| - a1,0b1 - gXPrar + 3gop(V)? Prar  + % QapPibia; + %gmpﬁm I+ % gwpv'ofr (b1 + a1) +
cos2t

+ 3gwpv’ofraibisin2t + cos3t[—% gwpPib1 +% Pibias]+ sin3t(-% gopPrar + % gwpPibiar) (34)
From the condition of periodicity we obtain two algebraic equations

- anon + (g%ir - 330p(v0)? Br - 3 g@pPrAI)br = 0

- (g%1P1 - 3g0p(V'0)? P1 - %)gﬁ)pﬁlAl)al Sardor=0 (35)

Where
A} = 2+ b1 )

For the non-zero a; and by the following relation must occur
o @GP - 3gep(ve? Pi- S goppiAr =0 (36)
- (8%1P1 - 3gap(v'o)? f1 - % gopprAi - g,

Thence

~myp  gXiPr- 3gop(vo) P - % goppAs - =0 (37)

The only real solution of (37) is

a0 = 0

A2= x=3gwp(v'0)2 38
?[ %copﬁl (38)

The follgwing function is the solution is (34)
(6)] p2 2
1



Yio= - gXivo +gwp(v’o)® + % gwpv’of1A1 +% gwpv'of1(br + a1) + cos2t + gwpv’frarbisin2t + (%ga)p&b]

3 3

+ % gaopPibia) -cosgr + g%gwp&m 33 (39)
+ 312 gwpPibia;) -sin3¢

The solution omits the general integral of the homogenous equation by associating it to yo,o.
When substituting (33) in the fourth and sixth equation of the equation system (32), after transformations, we
obtain

Yt V2110 321, — Wg1gXayo”
p2

2
+ gop2? (v76)3 + %vz,1gwpv”aﬁ1A1 22

+ cosT [v2,18%of1b1 - 3gwpv2r 2
(0"0)?P1b1 + % g0pPrAb} +sint [-0218%5fm
+ 3gopv2,1fv”o) P

3 3 3
+ 3 gopprAin] + 5 v218wpv” 0

Bi(bi=a1)Cos2t +3 vz 1gwpv” P~y °
sin2t + (—% g(opﬁ1b1+3% 3gc)pﬁ1b1a1) P
cos3t + (- % g(opﬁmﬁ% SwpPibra) sinZt 2 (40)

y"1503)+ 03,141,055 0 (41)

The following functions are the particular solutions of the above equations:
= %o+ ”\3
g™ g v eopv2a(vo)
2
3 2., 1
+ > gopv oA F 2
Va1 2.1

[0218%21 - 3gwpv2,1(0%0)?ps

- % gopP1Ai]bicost+ v—l_l ,
21

[~ v218X0f1a1 + Bgwpva1(v”d?

3v 21
2w -4) 2

ﬁ 1+ % g&)pﬁ 1A1&1 [§int+

2



1

gwpv” of1abisin2t +

v -g 2
21
(- % goppiam+ % gwpPibiar) Cos3? (42)
! 1 33 .
v - (- 2 gwpPrm+ 1 %@Pﬁ1b1a1)81ﬁ32[
And 217
vy =0 (43)

By means of substituting (39) in the third equation of the system (32), we shall obtain
Yol + Yo @ (ao1a1+ % Yi€id1 — H1ﬁ1b1 +v1Q)
CcosT + (a0,1b1+ % Y1€1b1 + H1ﬁ1a1 + Y1P) (44)
sint + %Y1€1LI1COS3T + %Y1£1a1sin3t

we shall avoid terms unrestrictedly growing in time in its solution if the following equations are fulfilled.

1

(a01- 3 yi€1)a + H1ﬁ1bl =v1Q)

- H1paar + (a0.1- % yien)br = y1P (45)

For the case of P = Q, after transformations, we obtain the following from (45)

P 31 ~ P PyoryaP 2 2
ai= |-y%+- e—z‘[—IﬁiJ +ye-%2H 3
\/AYZ aY 1 i (EY) Y f P%\z( 11 2131
1 1 1
The particular solution of (44) is
m_ 1 .
Yoi=-1; vi€1(a1cos3T + bisin3t) (47)

Taking (33) into consideration in the fifth and seventh equation of the system (32) we find the particular
solutions

Yo1 = — (302,1\(1281611 - 021 HoPiby + y2Q)cost

v 21 2
21
1 1 A . v ye 2
+ —— (Gv2yieih + v Hofiar + y2P)sint + ——— 2121
- Gu21yieib + v2aHofar + yoP) 2o %) ;
21 21
v .
acos3t + v ré, b18in3t
20 -9
21
(3) — (= 1 1
yor =G+ (- 503,18117% + P)cost

v -}
31



1 1 .

+— (= +Q +

——7 Guaidia + Q)sint
31

2(v -9 (49)
v &€ 2 .
bicos3t + Z(U—_;jla%ser
31
We have thus determined the particular terms of the series (27) and (28), limiting the calculations to the first
approximation.

Let us now concentrate on the analysis of the case of ®=p,. The solutions will be sought, as has been done
previously, in the form of the series (27) and (28) for i = 2. From (28) we obtain

No=T+e— 4+ ... (50)
1,0
Let us denote that
}\21 =1y, 2 >\2 10
}\23 v, 2 >\2
1
where v12 = 5 (51)
2
3
'03,2 = E
P

and v;, and v3 2are not integers.

Analogously to (30), we have
ool®) = yoo =0 52)

Substituting (27) in (26), with (50, (51) and (52) taken into account, after equating to zero the coefficients at the
same powers of i and ¢, we obtain

y"10 + U1,2Y10 ’ﬁ)‘g - gx"v v'0 2 X012
W
Pay o2t gopv21 (o) : 3gwpPv2. 2

(©'0)2Y 00 ¥ 380pB20 oy 00)? + 8BPPa(y 00)> ©

@
y" 10 + 07 Yi0= - y1v1zeyoocos2t 4 V12
A 2 .
Hip2y o0 S')ﬁﬂ)sn’l'[ +y1Qcost ;
@ @
y',0+y1,0=0

y”l(,%) + ylro(& - al,Oy0,0 + %)— gXZU IIO
2

2
= 8X2f2y " 00 2)B0P(V"0)>+ 380P(V"0)3P2y o0 @
+3g0p0" ofo(y o0) Pgapba(yoo2s @ (53)

yn (2)+ yl,OQ - aioloo + ¢22)€2 yg,oCOSZT(z)

@



+ HoBay’o,0 + y2Psint + y2Qcost
y'10+ 273,22]/1,0 =0;
y"1,0 + U32Y1,0 = U3,€2Y0,05IN2T
+ Pcost - Qsint + v3,G 2
After substituting the following in the fourth equation of the system (53)
yd8 = axcost + brsint (54)

and using the trigonometric relations, we obtain

Y+ o L - X" + gop(”o):
2

2

+ % gwp(v”o)2 (B + Bh) + {aroma - gXafaba
33
+ 3gwp(v”o)2pibr + % gwppb2

3 3
+ 7 8oppabinr)cdst + (- aiob:

77
0

+ gXafaaz - 3gap(v”0)2paaz

+ % gcopﬁzbfuf - % g(opﬁzaz)si%nz

+ % g@pv”ofa(b2+ B2)cos2t

+ 3gwpv”, foabhsingt +%

+ %(112 + 3bg)§copﬁ2azsif13T (55)

From the condition of periodicity of the solution we get
- a0m2 + (- g3z + 3gwp(v” )2 + 3gwpfaAr)br = 0,

2
(832 -3gwp(0 )2z - = gopfaAz)ar * 2

- a1,0b2 =0 (56)

2

2
Where A, = a, = by

For the non - zero a; and b, the main determinant of the equation system (56) must equal zero. From this
condition we obtain
a0 =0



Az = X‘—Ségmp(v 0) (57)
0P8 o
2

The particular solution of the Eq. (55) is
(2)_ g i 4 4 3 4
Yyr0= - gxav’o + gop(v”o)® + 5 gopv”ofaAs 2 2

2
2

2 2
3 4 .
+ > gopv”ofa(bs+ az) -cos2t 2
+ g(DpZ)”o ﬁzdzsziﬂZT 3 SLZ (3&2 + bz)go.)pﬁzbz 2
Cos3t + 3% (3b2 + m)gwpPamsindt (58)

Making use of (54) in the first and sixth equation of the system (53) we obtain their particular integrals

-9 -
Yo =1 = 80" - gwpv/i2(0)?
2
(2 2
+ i ® U’ﬁ A 2+_21_
2172gp022v—1122

- (= gx1v122 - 3g@ppav’2(v")

3 3.2 1
+ = owpBrA%)brcost + ——
> 80pPaA2)b: —,
12

(gx171,2P2 - 3gwPP2021,2(V"0)?

+ % g(DpﬁzAsz)ﬂZzSinT + 2(173—17_1) gcﬁf)ﬁz
12

3v
U’o(bz + QZ)COST + ngéﬁ)ﬁzv'oazbz 2
12

3

ot -1 gopB
sin2t - (b2 + 3a2) 20 9%
12
bycoS3T + = (a2 + 3by) =L b sin31’? (59)
2 TN
12
and
yi@=0 (60)

The substitution of (54) in the fifth equation of the system (53) gives

Yo1 + Yo1= (- o142 - % y2e212 + Hofobs + v2Q)



cosT + (- ao1b2 - % Yag€aa + 1212,32112 + y2P) (61)

. 1 1 .
SINT + ~ Y2€202C083T - = yae2bosin3t

The following is obtained from the condition of periodicity after transformations and after assuming that P =

Q.
A 1 P
ady + 2m(B2fo- v € -2 V)

A 1 1P
(HZﬁz—;YS)“ Ye—3%
1
2y

2
- 2Y§2Hz I;iz pr-,ve)350 (62)
Thence
_ P _2|_ 1 A P 4 P 4 A P 2
= |-y+zve - ij +ye-=2H e, 3(63
01 \/AYZZZLY ; 53 (ZY)ZN i, 3[55\2(2 ;2(2 )
2
Yog) = Y2£2(a2c083T + brsin3r) (64)

on the other hand, after substituting (54) in the second and seventh equation of (53), we shall find the
particular solutions

Y= : ) (%02,1\(1282512 - 02,1H1ﬁ2b2 + y1Q)cost

21
+ (102 1y1€2b2 - v21H1 oz + y1P)sint + —— 212
Vo127 ’ 2(v -9) 2
21 21
vy %2 .
11C083T — - o o bgin3t (65)
12
(3) — G + 1 1
yor = ( =382l + P)cost
+ L + Q)sint + 522 66
Vo (503'2’32”2 Qsint 3075 3 (66)
3.

N

31

bicos3t - —332a§sm31

%

Finally, let us consider the case of m=ps. Periodic solutions are possible for particular value of the parameter As.
Nz l+e—+p—+pf 10 (67)

Let us denote that
>\21 =10, 3 }\3
>\2 =0y, 3 7\3

where;



P
01,2 » (68)

032 =

hSES]

and v;3 and v2,3 on assumption are not integers. Similarly to the previous considerations, assuming that

Y0,0(T) = Yoo(T)= 0 (69)

) ®
we obtain the following recurrent differential equation system from the equation system (26)

®w 2 2 W 2,

Y"1,0 + 013 Y10 = (g + Q1y10) [UT - JCZJ'O + @pv (V'o)?]
1

y" 194+ 01,5210 Py1015 Y2 00529 + y1(Psint + QcosT)

(€ @ (€) 2
Y"20 + 015Y10 = - V131, 0y10+ (g + Qiyoo)
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Y"20 + 023 Y10 = - U23a1,0y10 + (g + Qu1yo,)

o w2 1 9
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y"11+ Yi1 = - 41,1500 - 41,0401
3 1 2
- ao,lyl,o( 2 E11/1,0 sti2t +éeal1,0 @
. (3) (a -
Sin2t + a1,01/0,0c052T + Y1,0c082T + a1,0G
After substituting
3) .
Yoo = acosT + bssint (71)
in the twelfth equation of the system (70) we get
©) ®

Y 00+ y"1,0= - aro(ascost + bssint) (72)

For the non-zero a; and bs the following results from the condition of periodicity

ap=0 (73)
Thence
yin =0 (74)

Making use of (71) in the first and sixth equation of the system (70), we shall obtain their particular solutions

i) .
Yo = [% + m? (ascosT + bssinT)]
13 13

[17”—;3- v Fve+opy (V)] (75)
1
2
y1(,20) = [:;22; %1 (ascosT + bssinT)]

Eso g0+ opy (V3P (76)
2
After substituting (71) in the thirteenth equation of the system (70), we have
Y781+ ydd=G + (- a0 a3 + % as + P) cost
+ (- a0 bs - % bz - Q) sint + % (a3cos3t + b3sin3t) (77)
The condition of periodicity gives

@

app = -+

N | =
Q|

@_1_,0@
a1 = > + n . (78)

The particular solution of this equation is the following:



yo1=G-— (a3cos3r + b3sin37) (79)

When substituting (71) in the second and seventh equation of the system (70), we obtain their particular
integrals:

2

(€] 13
Yoa = v—y%f (—b3 + Q)cost
13 )
= Y, (v : v vi3 1
Tt (5 &3+P)smr 20 9y2
13 13
(a3sin3T - b3cos3T) (80)
2
@_ v v 3
Yor= 7 (—— B3+ Q)cost
23
v
—%%3+ P)sint + ——— 20 _92}32 )
(LZgSiI‘l3T - b3cos3T) (81)

After substitution (71) and (73) in the fourteenth equation of the system (70), we obtain the following from the
condition of the existence of periodic solutions
axo= 0 (82)
Analogously, taking (71), (79), (80), (81) into account in the fifteenth equation of the system (70), we shall
obtain equation which, after transformations, will assume the form

@) 11
yev v -1 1 20
a = +
02 el v -9
2
yev 2 ( 113 131 )
4T Ny 21 v -%
3 2.3
1 1) 1 P ey %

Lo L P - 2 83
2 0 32 (2(1/ 1Dy 2(v -1) ?2 (83)
13 2,3

YEV 1 1
a =114 2 +
02 Fiay s e
1,3 2,3
y.sv2 1 1
+ 223 ( + )
4 v 21 v - b
2,3 2,3
1 1 Q ey £y
——gpd — % 1 2 2 84
7 d b(2(v 1, 20 -1))2 (84)
3 1,3 2,3

The following algebraic equation system will be obtained from the condition of periodicity of the solutions of
the equation system (70) after substituting (71), (74), (75), (76) and (79) in its sixteenth equation:

e c 0, ech) , _
- 41103 — 2(v1 1) = 20 1) B=0
2,3 2
—611,1173— £ 01}21 . ecf) % 0 (85)

20 2) 20 -1}



Where:

v
Ci:—2=v X0, +wpv (v,)3
P12 2 P ( )2

1,3 1,3
v
Cri—2v X", +oov (v,)3
1oV 730 0T @p ( o)z
1 23 23

From the condition of a non-zero solution of the equation system (85) in relation to a; and bs, we obtain

m =[5 Gl (86)

23 13
2
The coefficients of the sought series (67) are determined by the expressions (73), (78), (83), (84) and (86).

RESULTS
Calculation Examples

The analytically obtained results of parametric instability zones are to illustrate the influence of particular parameters of
the system on their magnitude and position. The physical parameters of the system are given in the form in which they
occur in the differential Eg. (12).

The influence of unbalance uP, damping (uH,), and the shape of friction characteristics (a/8) on the magnitude of the
parametric instability zones for p; and p, for the following data: Q% =900s?, 0, = 480s?, w,° = 4800s”, g = uG = 9,81ms’

, Vo = 0,4ms™, € = 0,2. On the basis of (14), p, = 73, 32s™ p, =28, 35s™, and ps; = 69,28s have been obtained. The
adequate coefficients assume the form y; = 0,833, y»,=0, 12, 8; = 0,126, 8, = - 0,674, &, = 1,176, & = 0,376. (While, a/8 =
a/p).

The parameter instability zones (for p;) and 5 (for p,) expand with the increase of unbalance yP, while, depending on
the value of the quotient a/8, this tendency can have different intensity. In the case of a/8 = 0,5m?s® the doubling of
unbalance has caused the expansion of the instability to double for zones for p; as well as for p,. For a/8 = 1m®s™ the
increase a tripling of unbalance brings about a comparatively small expansion of the instability zones for p;, while for p,
the expansion is still almost doubled. In the case of large unbalance of the rotor, the changes of the quotient a/ do not
influence the magnitude of the parametric instability zones. The influence of damping on the magnitude of the instability
zones corresponding to the frequencies p; and p, is also very different. Small damping (uH; = 0,05s™) causes
considerable shift of the zone for p, in the direction of the growing value of modulation depth u(u =0,15). In the case of
double increase of damping the zone will not occur for y <0, 3.

The magnitude and position of the instability zones for p; are not sensitive to changes of the damping coefficient. In the
case of uH; = 10s™ the pre open zone of frequency p; exists for = 0,034. After a doubled increase of damping, when yH;
= 20s, the lower border of the occurrence of the zone is shifted to the value of y = 0, 07.

The parametric instability zone for p3 depends on the initial conditions of the system’s motion. It has been prepared on

the assumption that a;z = bz = 0,01m where as= y5(0), bs = y3(0). The calculations, in the case of the resonance coordinate
ys have been performed with exactitude up to the second approximation, thence the inclination of the instability zones in
the direction of the growing values of the parameter N3. For the first approximation, the zones remains symmetrical in
relation to the straight line N3 = 1. As in the cases considered above the increase of unbalance considerably expands the
instability zone. The changes of the value of the quotient a/8 and damping have a negligible influence on the magznitude of
the zone. Figure 7. Presents the parametric instability zones for various values of the parameters %, (;° and w,°. For the
zones denoted by 1 we get Q° = 14400s%, 0, =1920s%, w,* = 19200s’%; for the zones denoted by 2 we have Q° = 3600s
2, 0,* =480s? w,” = 4800s and for the zones denoted by 3: O = 900s?, Q,° =120s?, w,*> = 1200s™. In all the cases the
magnitudes of the other parameters are as follows: yH; = 10s™, £ = 0.2, a/8 = 0.5m°s?, v, = 0.4ms™, uP = 0,0015m.
The growth of the squares of frequencies Q7, Q% w,* (resulting from the increase of rigidity of the elastic elements in the
system or from the decrease of the values of masses) causes that the instability zones for p; and p, expand. For example,
the increase of the parameters Q% Q,° and w,” by four times brings about an approximately doubles expansion of the
zones. The instability zone for ps is not influenced by the frequency changes in the system [Fig. 9(c)].

There is influence of the velocity changes of the belt v, on the magnitude of the instability zones for p; and p,.
Calculations have been performed for the data denoted by 1, except for the velocity v,, whose value has been changed.



In each case the velocity increase of the belt causes the expansion of the instability zones. For v, < 3,3ms™ these
changes are less evident. The influence of the velocity changes v, on the parametric instability zone p; is practically
negligible.

CONCLUSION

The paper presents the analysis of a discrete mechanical system with three degrees of freedom, where self excited
vibrations caused by friction, as well as parametric and forced vibrations occur. The system of ordinary differential
equations governing the motion of the analyzed system if nonlinear section of the six order. The periodicity of the
coefficients in the linear section of the equation of motion results from non-identical moments of inertia of the shaft cross
section of the rotor consisting part of the analyzed system. The non-linearity is introduced into the equations of motion by
friction between the belt and the rigid mass element where the rotor is placed. Moreover, it is increased by the normal
reaction changes between the belt and the rotor base resulting from the rotor vibrations. External excitation in the form of
a periodic function of time is also introduced into the system; the excitation is the effect of the unbalance of the rotor.

The analysis performed makes it possible to present the following conclusions:

(1) The method of seeking a solution as the power series of two perturbation parameters y and € used in the
considerations makes it possible to investigate the single resonances of any order for the systems with weak nonlinearity
and weakly modulated (u<«1).

When performing calculations with exactitude up to the second approximation, it turns out that the limits of unstability
zones incline in the direction of the growing values of the parameter N3 (Fig. 6). For the first approximation, the limits
remain symmetrical in relation to the straight line A% = 1.

(2) The parametric instability zones for p; and p, expand with the increase of the rotor unbalance. Depending on the
value of the quotient a/p, this tendency has different intensity. In the case of a/8 = 0,5 m°s?, a double increase of
inbalance has brought about a considerable expansion of the instability zones, for p; as well as for p,. For a/8 = 0,1 m’s®
the unbalance which causes a rather small expansion of the instability zone for p; while for p, the expansion is still almost
double. In the case of lack of the rotor unbalance the changes of the quotient a/8 do not influence the magnitude of the
parametric instability zones. The influence of damping on the magnitude of the instability zones corresponding to p; and
p, is also very different. Minimum damping (uH: = 0,5 m?s™) causes considerable shift of the zone for p, in the direction of
the growing values of modulation depth (uH; = 0,5 m?s™). The magnitude and position of the instability zones for p; are
not so sensitive to the damping coefficient changes. The regularities indicated here are the more clear, the greater is the
difference between the values of frequency p; and p, (i.e. for p; >»p.). The increase of unbalance also produces a
considerable expansion of the instability zone for ps; however the changes of the parameter and of damping have no
essential influence on the magnitude of the zone.

The growth of the frequency squares Q°, Q,> and w,° causes the expansion of the instability zones for p; and p, are
expanded. This property is noticeable within the range of great velocity (v, > 0,3ms™). The influence of the velocity
changes v, on the parametric instability zone for ps is practically negligible.

(3) For the frequencies p; and p», the position of instability zone limits does not depend in the first approximation on the
initial conditions of the system’s motion. The magnitude of the instability zone limits for p; depends on them.
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