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Abstract 

 

This work studied the solar radiation pressure effects on the motion of a spheriodal artificial satellite. 
The incident and reflected radiation forces were taken into account. A semi-analytical technique was 
presented. Numerical solution was carried out to obtain the perturbation effects due to direct solar 
radiation pressure on LAGOES 1. The results were compared with the observations and previous 
works. 
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INTRODUCTION  
 
Every satellite is perturbed by its interactions with the electromagnetic radiation, not only the direct radiation pressure 
caused by sunlight, but also the indirect radiations. Some of these indirect effects are produced by Earth’s reflected 
radiation, thermal emission by satellite itself, and eclipses affecting portions of the orbit (Milani et al., 1987). 
 Many studies have been done to obtain the effects of solar radiation pressure on the artificial satellite motion taken into 
account the shape of the satellite (Milani et al., 1987; Fea, 1970; Fea and Smith, 1970; Vanderburgh and Kissell, 1971; 
Smith and Kissell, 1972). As an example, Moore, 1979, studied the orbital acceleration and the perturbation of the 
balloon satellite by summing over the sunlit part of each orbit.
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 In this work, perturbation effects due to direct solar radiation pressure and the thermal emission forces affecting on a 
spheriodal satellite will be treated.  
 
 
MATERIALS AND METHODS 
 
The Direct Solar Radiation 
   The direct effect of the solar radiation on the satellite means the net acceleration resulting from the interaction (i.e. 
absorption, reflecting, or diffusion) of the sun light with each elementary surface of the spacecraft. Each photon carries 

an amount of momentum given by                               omM
gE

c
                                                                                                                                   

(1) 
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Where, 
omM is the photon’s momentum gE is the energy of the photon (proportional to the photon frequency) and c is 

the velocity of light. The momentum can be exchanged during the interaction with a solid surface. So, the light behaves 
as a medium of material particles continuously emitted by the sun. A satellite whose surface has a reflection coefficient 
 , placed at a distance d from the sun and receiving the solar radiation at an angle of incidence 

 
will experience an 

acceleration under the influence of solar radiation pressure, determined by  

     
1

2
F R
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
                                                                                     (2) 
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Where  
0   is the solar constant, c is the speed of light, a

is the mean distance Earth-Sun, and R
 is a unit vector 

in the direction Earth-Sun given in a geocentric equatorial frame by 

cos cos sin sinR i j cin k                                                                             (4) 

 

Where,  is the true celestial longitude of the Sun,  is the obliquity of the ecliptic,   
is expressed in terms of the 

orbital elements as  f        
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Where r   is the mean distance satellite-Sun. 

 
 
The thermal emission  
 
Thermal emission from the satellite itself is the indirect effect of the interaction between the solar radiation and the 
artificial satellite. It is due to the fact that the equilibrium temperature distribution on the satellite surface is non-uniform, 
because of the different orientations with respect to solar heating of different parts of the spacecraft body, which causes 
a net force acts on the spin of the semi major axis of the artificial satellite orbit. (Sehnal et al., 1997) studied many 
parameters affecting the orbit of the accelerometer MACEK, they found that the acceleration due to the anisotropic 

thermal emission is 2  10
- 9

 cm s
- 2

. Also, these effects on Mimosa satellite were found as 2.3  10
- 9

 cm s
- 2

 (Sehnal et 
al., 1998). Since the thermal photons emitted from the hotter areas of the surface carry away more momentum than 
those emitted from colder areas, there will be two main asymmetries of temperature distribution for a spinning satellite 
(Milani et al., 1987). 

1-A seasonal asymmetry which arises from the fact that the angle  between the spin axis and the sun’s direction is 
not 90

0
 and changes with annual periodicity. This seasonal asymmetry causes a different radiation flux on the northern 

and southern sides of the satellite (assuming satellite as a small planet). 

2-A diurnal asymmetry between the day and the night sides is presented, whenever  is not zero. 
     Now, the force due to the seasonal temperature asymmetry should be estimated. The energy flux absorbed by the 

satellite’s surface element is given by 

0 .absorbE n s                                        (6) 

Where   is the absorption coefficient,  is the solar constant = 1.367  10
6
 erg cm

- 2
 s

- 1
, n is a unit vector to the 

surface element, s is a unit vector pointing towards the sun.  

     The energy emitted per unit area is given by 

         
4

emE T                                         (7) 

Where   = 5.67  10
- 5

 erg cm
- 2

 s
- 1

 k
- 1

 is the Stephen Boltzmann constant, T  is the surface temperature,  is the 

emissivity coefficient, which equals one for the black body. 
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The thermal state of a spherical, homogeneous, and uniformly rotating body is considered which is illuminated by the 

Sun. The satellite spins around the z-axis with unit vector w , while the y-axis contains the projection of s  on the xy 

plane, and n   is the unit vector which is perpendicular to s . 

     Applying the polar coordinates ),,( r  we obtain 

       sin cos ,sin sin ,cosn                                                  (8.1) 

       0,sin ,coss                                       (8.2) 

          . sin cos sin cos cosn s                                                  (8.3) 

 For the steady state case the heat conduction equation takes the Laplace’s form,
9
 which is given by 

      
2 0T                                          (9) 

Equation (9) can be solved in the form 
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Where 0T  is the average temperature, R  is the radius of the sphere, 
nT  are constant coefficients, and 

 cosnP  is Legendre polynomial of order n . 

     As a boundary condition, the balance between the outward heat flow caused by thermal conduction which is given by   

T

r






 and the emission at the surface (i.e. the difference between   
4T    and the energy flux absorbed from the 

Sun 0.n s  ), is given by         
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

                                   (11) 

Where   is the conductivity. It is more convenient to express .n s in terms of its angular average which is given by  

      
1

( ) .
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S n s d
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                         (12) 

The integral is extended only to the illuminated hemisphere, i.e. for . 0n s  . If    is chosen to be less than
2


, the 

analytical expression of )(S  is given by 
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                                                                              (13.3) 

Where 1  is the solution of . 0n s  , i.e.    1 arcsin cos cos      

     In order to derive the force due to anisotropic thermal emission, it is considered that each surface element emits in 

the direction n a momentum flux as  
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                                (14) 

Where c  is the velocity of light, the factor (2/3) is allowed for the fact that the emission is assumed to follow Lambert’s 

law. This emission corresponds to a net force acting on the satellite which is given by 

      

42
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 
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 
                                                                     (15) 

Where ds is the area of the surface element. The total force is obtained by integrating over the whole body surface. 

Owing to the axial symmetry of the problem, it is directed along W , the explicit computation yields 
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  is reduction coefficient given by 
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                                                        (17) 

     On the other hand, the diurnal temperature asymmetry which causes a force perpendicular to the spin axis can be 
neglected, since this force is proportional to the temperature difference, it is very small in comparison with that arising 
from the seasonal effect. 
      The effects of both the incident and reflected solar radiation pressure forces on a spheroidal satellite could be 
obtained taken into account the following assumptions: 

i) The sun moves in a circular orbit such that    becomes the mean longitude of the Sun, i.e. tanvt cons t  ; 

ii) The direction and distance of the satellite from the Sun are similar to those of the Earth; 
iii) The Sun-satellite line is parallel to the Sun Earth line; 
iv)The satellite has a high reflecting surface, so that the diffuse component of the       reflected radiation is negligible; 
v)  The albedo effect is ignored. 
     Now, if the satellite is a slowly spinning or a three axis stabilized spacecraft, equation (16) would not be valid. In 
these cases the satellite’s thermal behavior would be very different due to the complex shape and the active thermal 

system. It is known that, if the temperature difference T  between two substantial parts or sides of the body is existed, 

the perturbed acceleration can be evaluated from the expression (Milani et al., 1987). 
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Where
A

M
 is the mean value of area to mass ratio of the satellite, Equation (18) is considered the general formula to 

obtain the force due to the anisotropic thermal emission.  
Finally, the effects of both the incident and reflected solar radiation pressure forces on a spheroidal satellite can be 
obtained from Equations (5) and (18) in the form 
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                                                        (19) 

 
 
Equations of motion 
  
For a spinning satellite, there will be two main temperature asymmetry distributions. Assuming the satellite as a small 

planet, then, a seasonal temperature asymmetry will arise due to the fact that the angle  between the spin axis and the 

Sun’s direction is not 90
o
 and changes with annual periodicity, causing a different radiation flux on the northern and 

southern sides of the satellite.  
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Therefore, the acceleration due to the seasonal temperature asymmetry will be directed along the satellite’s spin axis, 

and it is a function of the angle between the spin axis itself (W ) and the Sun’s direction (s ). If w is assumed to be 

constant, (i.e. if the satellite is rotating around the axis of maximum moment of inertia and no free or forced precession is 
present), and if there is no eclipse, then this acceleration is a function only of the variable s. Then the acting force will be 

a function of s with three components      , ,x y zF s F s F s . 

The variations of the orbital elements due to the perturbations of the total incident radiations and thermal emission will 

be only contributed by the radial RR  and the transverse TR components.  In an orthogonal reference frame with the 
origin at the center of the Earth, x-axis is pointing towards the perigee of the satellite orbit and z-axis is directed as the 
satellite orbital angular momentum, the radial, in-plane transverse, and out of plane unit vectors are written as  
 

    cos ,sin ,0q f f                                  (20.1) 

    sin ,cos ,0tf f f                                     (20.2) 

    0,0,1w                                                                                              (20.3) 

Where, f  is the true anomaly 

 .RR F s q                                                                    (21.1) 

 .TR F s tf                                                                               (21.2) 

 .W F s w                                                                                                                          (21.3) 

Substituting into the Lagrange equations Gaussian form, for simplicity  F s  replaced by F , after some reductions 

this yields (Aksnes, 1976). 
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Where f  is the true anomaly, ,u f F   denotes the magnitude of the radiation pressure force per unit satellite 

mass, p  = 4.65 x 10
-5

 is the force per unit area which exerted at the Earth by the Sun when its geocentric distance 

equals its mean distance (i.e. R a  ), and W  are the direction cosines of the force F  along the satellite’s radius 

vector r . 
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Effect of the earth’s shadow 
           

An eclipse occurs when the satellite enters the area projected by the Earth’s shadow on the 
satellite’s orbit. This area is an ellipse, whose semi-major axis and semi-minor axis are defined as, 

cosR ec I  , and R , where I   is the geocentric angel between the Sun and the orbital plane 

(Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1. Section normal to the orbital plane 
containing the Sun position 

 

Then, from the equation of an ellipse with the center of the ellipse is the point of origin, the Earth’s 
shadow is given as 

2
2

2 21 cos
sh

sh

R
r

e 



                                                                                                             (23)  

Where,    is measured from the conjunction point in the orbital plane, it therefore has two values, 

the entrance or the exit of the satellite into or from the Earth’s shadow (Figure 2). 
 

 
Figure 2. The position of the Sun 
relative to the orbital plane 

From the spherical triangle CP   

  0 0sin cos sin sin cos sin ; 90 90I I I a I                                      (24.1) 
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Where, a  , and   are the right ascension and declination of the Sun at the time of nearest perigee passage. Then 

 cos cos
cos

sin
N

a

I







 



                                                                                          (24.2) 

cos sin sin
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sin cos
N

I I

I I





  



                                                                                            (24.3)   

The geocentric angle   in the orbital plane between the perigee and the conjunction point (as in Figure 3), is given by: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The angle between the perigee and the 
conjunction point 
 

N                                                                                                                             (25.1) 

Then, the angle between the conjunction point and the satellite is  

f                                                                                                                               (25.2)   

Now, the satellite enters and leaves the shadow when shr r  

Then, from Equation (23) and by using Equations (24) and (25) the shadow equation will be 

 2 2

1 2 3 4cos cos cos 0k f k f k f k                                                                     (26)    

Where      

 
2

2 2 2

1 1 cosk a e I                                                                                                        (27.1)          

2 2

2k R e                                                                                                                               (27.2)    

2

3 2k e R                                                                                                                             (27.3) 

 
2

2 2 2

4 1k R a e                                                                                                               (27.4) 

Equation (26) has four roots, satisfying 
0 090 90f                                                                                                                    (28) 

If this region has no roots, an eclipse will not take place. 

Since the true anomalies of entrance and exit obtained, then the corresponding eccentric anomalies 1E  and 2E  can 

be obtained. 
         The application of this work can be obtained as follow: 
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(1) The eccentric anomaly E1 for entrance into the shadow and the eccentric anomaly E2 for   the exit from the 
shadow are calculated from Equations (26) and (28).  
(2) The variations of the elements for a satellite moving in sunlight are obtained by integrating Equations (22) from 

1E  to 2E 11
 this yields;  

 
2

1

1
3 2 22 cos 1 sin

E

E

a a F RR E TR e E                                                                                      (29.1) 

   
2

1

1 1
2 2 22 2

1 3 1
1 1 cos2 2 sin sin2

4 2 4

E

E

e a e F RR e E TR E e E E
 

      
 

                                     

                                                                                                                                                        (29.2) 

 
   

2

1

1
2 2 2

1
2 2 2

3
1 sin sin2 cos 1

2 4
1

cos cos2 sin
4

E

E

e
e E e E E e

i a e FW
e

E E









 
      
 

 
 

 
 

                                                                                              

                     (29.3) 

 
   

2

1

1
2 2 2

1
2 2 2

3
1 sin sin2 sin 1

2 4
sin 1

cos cos2
4

E

E

e
e E e E E e

i a e FW
e

E E






 
      
 

  
 

 
 

                                                                                                       

   (29.4) 

 

 

2

1

1
2 2 2

1
2 2

3 1
2 sin sin2

1 2 4
cos

1
1 cos cos2 sin

4

E

E

RR E e E E
a F e

i
e

TR e e E E

 




 
      

   
 

  
 

                                                                         

                                                                                                                               (29.5)   

     

   

2

1

2

1 1
2 2 22 2

1
2 2

1 1

3 5 2 5
sin sin 2

2 3 3 12

1
1 cos 3 1 cos cos2

4

sin cos 1 sin

E

E

RR eE e E e E

M e i a F TR e e E E

E e E S E TR e E

  

  
      

  

 
         

 

 
   

 

                                                                                     

                                                                                                                                          (29.6) 

Where    0 , 0RR RR TR TR  , and W  could be obtained with 0f  , from 
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Where   is the obliquity, and  is the ecliptic longitude of the Sun (Kittel and  Kroemer, 1980). 

 
 
RESULTS AND DISCUSSION 
 
To show the effects of the total incident radiations and thermal emission, applications on the artificial satellite LAGEOS 

were done. This satellite is a sphere with a radius of 30 cm, a mass of 400 kg, and 0.4a   , typical values for 

unpolished metal surface. In this case the conductivity of different surfaces is shown in Table 1. (Milani et al.,1987).
 

 
Table 1. Conductivity and the reduction coefficient for different surfaces 

 

   erg cm
-1
 s

-1
 k

-1
   

2.1   10
7
 471 for homogeneous Aluminum. 

3.5    10
6
 79     for homogeneous lead. 

0.0 155 for core of 25 cm and outer shell of Aluminum. 

       

It is found from equation (18) that, the semi major axis variation of LAGEOS is 210
-10

 cm s
-1

 due to these effects, with 

T = 0.2 k, area to mass ratio
M

A
= 0.007 cm

2
 g

-1
, and absorption coefficient a  = 0.2. These effects are too small to 

be account, but can not be completely neglected, taking into account that the initial surface temperature 0T  is 280 k. 

     The diurnal temperature asymmetry causes a perpendicular force to the spin axis. In our applications the spin rate of 

LAGOES is about 10 rad s
- 1

,
12

 the maximum temperature difference T  between the day and night sides of the 

satellite cannot exceed 10
- 2

 k 
13

 with a phase close to 45
0
. Since the force is proportional to the temperature difference, 

then this force is very small in comparison with that arising from the seasonal effect. Therefore the effect of the diurnal 
temperature asymmetry can be neglected. 
     Then, the effects of the direct incident solar radiation pressure and shadow were introduced, in addition to the 
thermal effects; the code is constructed to solve equations (29), which give the variations in the semi major axis and also 

the variations in the other orbital elements. These variations were found to be 
610

 cm per revolution in the semi major 

axis. 
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Through up this work, we illustrated the effects of the direct solar radiation pressure and anisotropic thermal emission 
taken into account the Earth’s shadow effects. The mean variations per one revolution were obtained for the first step of 
calculation, then the whole variations were presented in Figures 4-9, which illustrate these variations  in the orbital 

elements  a,e ,i , , ,   and M  respectively.  

 
 
 
 
 
                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The variations in the semi-major axis (δa) with eccentric anomaly (E) 

 
 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The variations in the eccentricity (δe) with eccentric anomaly (E) 
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Figure 6. The variations in the inclination (δi ) with eccentric anomaly (E) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The variations in the argument of perigee (δ Ω) with eccentric 
anomaly (E) 

 
 
 
 
 
 
 
 
 
 
 
 
 

50 100 150 200
E rad

1.0

0.5

0.5

1.0

1.5

2.0

107



 

50 100 150 200
E rad

0.5

1.0

1.5

2.0

2.5

3.0

10
7

 
El-Hameed et al 91 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. The variations in the longitude of the ascending node 
(δω) with eccentric anomaly (E) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The variations in the mean anomaly (δM) with eccentric anomaly (E) 

 
 
CONCLUSIONS 
 
In this work the variation of orbital elements of high altitude satellite due to direct solar radiation pressure and the 
isotropic thermal effects were estimated. The isotropic thermal effects produce variations of order 10

-10
 which considered 

very small compared with that of direct solar radiation pressure 10
-6

, so the addition of both of these effects was in 
agreement with the observation of the orbital elements.  
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In the near future the effects of the Earth’s gravitational force will be studied in addition to solar radiation pressure and 
thermal effects, and the Earth’s shadow will be taken into considerations. 
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